NATIONAL VACCINE ADVISORY COMMITTEE

VACCINE SAFETY WORKING GROUP

DRAFT WHITE PAPER

V2.0 for Public Comment
May 10, 2011
Executive Summary

Charge to the Vaccine Safety Working Group

Summary of Recommendations
Table of Contents

1. Introduction ... 5
 1.1. Relative benefits and risks of vaccines .. 5
 1.2. Current vaccine coverage levels .. 5
 1.3. Successes of the current vaccine safety system in the US .. 6
 1.3.1. Vaccine safety system activities leading to changes in vaccine recommendations 6
 1.3.2. Vaccine safety system activities providing reassurances of safety 7
 1.4. Challenges and opportunities to the current vaccine safety system ... 8
 1.4.1. Changes in the perception of benefit and risk of vaccines .. 8
 1.4.2. Advances in biomedical science .. 9
 1.4.3. Technological advances in epidemiologic methods and medical records 10
 1.4.5. Era of personalized medicine and more empowered patients ... 10
2. Organization of the Vaccine Safety Working Group .. 11
 2.1. Current charge to the Vaccine Safety Working Group .. 11
 2.2. Vaccine Safety Working Group membership .. 11
3. VSWG Methods for Addressing its Charge in Light of Prior Reviews .. 11
 3.1. Prior reviews of the vaccine safety system .. 11
 3.1.1. HHS Activities and Related Reviews by NVAC ... 11
 3.1.2. Reviews by IOM .. 12
 3.2. VSWG Meetings .. 12
 3.3. VSWG Subgroups ... 13
 3.3.1. Biologic basis of vaccine adverse events (Biomechanisms) subgroup 13
 3.3.2. Epidemiology to detect, quantify, and examine causality of vaccine adverse events (Surveillance and epidemiology) subgroup .. 13
 3.3.3. Structure and governance subgroup .. 14
 3.4. Development of recommendations ... 14
 3.5. Stakeholder and public input .. 14
4. Findings and Results .. 15
 4.1. General background ... 15
 4.1.1. The National Childhood Vaccine Injury Act ... 15
 4.1.2. General system framework ... 15
 4.2. Review of the vaccine safety system ... 15
 4.2.1. Coordination of the system ... 15
 4.2.2. Basic biomedical research ... 16
 4.2.3. Vaccine development/pre-licensure activities/clinical trials .. 17
 4.2.4. Vaccine licensure ... 17
 4.2.5. Post-licensure activities ... 18
 4.2.6. Feedback mechanisms: From practice to bench ... 27
 4.3. Stakeholder and public input .. 27
5. Discussion/Conclusions ... 28
 5.1. System framework and general discussion .. 28
 5.2. Conclusions from review of the vaccine safety system ... 28
 5.2.1. Coordination of the system ... 28
 5.2.2. Basic biomedical research ... 31
 5.2.3. Vaccine development/pre-licensure activities/clinical trials .. 32
 5.2.4. Vaccine licensure ... 33
 5.2.5. Post-licensure activities ... 33
 5.2.6. Feedback mechanisms ... 38
5.3. Goals of an ideal vaccine safety system.. 38
5.4. Public confidence.. 38
6. Recommendations... 40

Recommendation 1 – Leadership .. 41
 Recommendation 1.1 – Reaffirmation of the System Structure... 41
 Recommendation 1.2 – Structural Organizational Changes in the National Vaccine Program 41
 Recommendation 1.3 – National Vaccine Advisory Committee Charter .. 42
Recommendation 2 – Coordination .. 42
 Recommendation 2.1 – Expanded role for the ISTF .. 42
 Recommendation 2.2 – Expanded composition of the ISTF .. 42
Recommendation 3 – Research .. 43
 Recommendation 3.1 – Development of a vaccine safety research agenda .. 43
 Recommendation 3.2 – Building a vaccine safety research community .. 43
 Recommendation 3.3 – Research funding and investigator training ... 43
 Recommendation 3.4 – Ascertainment of public concerns and perceptions .. 44
 Recommendation 3.5 – Research directed to clinical practice ... 44
 Recommendation 3.6 – Data access ... 44
 Recommendation 3.7 – Biological specimens .. 44
Recommendation 4 – Post-Licensure Surveillance .. 45
 Recommendation 4.1 – Post-licensure surveillance plans for new vaccines .. 45
 Recommendation 4.2 – Post-licensure surveillance data considerations ... 45
 Recommendation 4.3 – Implementation of post-licensure surveillance programs 45
Recommendation 5 – Clinical Practice .. 45
 Recommendation 5.1 – Utilizing improvements to clinical practice ... 45
 Recommendation 5.2 – Barcode labeling of vaccines ... 46
Recommendation 6 – Communications .. 46
Recommendation 7 – Stakeholder and Public Engagement .. 46
Recommendation 8 – Assurance and Accountability ... 47
 Recommendation 8.1 – Enhanced role of the National Vaccine Advisory Committee 47
 Recommendation 8.2 – Relationship between ISTF and NVAC ... 47
 Recommendation 8.3 – External assessment of adverse event causality ... 47
 Recommendation 8.4 – Assurance and accountability of progress in enhancing the vaccine safety system .. 47
Recommendation 9 – Cost evaluation of recommendations .. 49
7. References.. 50
8. Tables.. 58
9. Figures... 62
10. Appendices... 65
The draft recommendations presented here were developed by the National Vaccine Advisory Committee (NVAC) Vaccine Safety Working Group (VSWG). The draft being circulated is a synthesis of the information that the VSWG has obtained since July 2009 for purposes of discussion and comment. No decisions have been made by the VSWG regarding the final outcome of these recommendations or their components. The VSWG will consider all comments made on this draft as they prepare the penultimate draft of the report for discussion and deliberation by the NVAC.

These recommendations, when finalized by the VSWG, will be deliberated on by the NVAC. The NVAC serves in an advisory role to the Assistant Secretary for Health (ASH), within the United States Department of Health and Human Services (HHS). If approved by the NVAC, they will be formally transmitted to the ASH for his consideration and possible implementation, which may include communication with various components of the Department and other interested parties.

1. Introduction

1.1. Relative benefits and risks of vaccines

Vaccines are one of the most effective public health interventions\(^1\). Vaccines have greatly reduced morbidity and mortality from diseases that were formerly major killers in this country (Table 1). In recent years, new vaccines against infectious agents such as rotavirus have been successful at reducing circulating disease\(^2\), and high rates of vaccine coverage\(^3\) continue to protect the vast majority of individuals and communities from vaccine-preventable diseases in the United States (US). In addition to reducing morbidity and mortality, routinely recommended pediatric vaccines have been estimated to save 9.9 billion dollars in direct costs and 43.3 billion dollars in societal costs over the lifetime of a single-year birth cohort\(^4\), for the seven-vaccine series routinely recommended as of 2001. An updated evaluation of the current vaccination schedule is currently underway.

However, no medical product can be proven to be 100% safe and vaccines can carry some risks. Possible adverse reactions vary by vaccine and population vaccinated, and can include both minor but common side effects such as fever to very rare but life-threatening illnesses such as anaphylaxis (approximately 0.5-1.5 cases / 1,000,000 vaccinations)\(^5\). To fully assess the risks and benefits of vaccines, the risk of adverse events following immunization (AEFI) must be carefully monitored and understood. A robust, responsive and scientifically innovative vaccine safety system must be in place to detect, evaluate and respond to AEFI. This system should also foster opportunities to develop tools to prevent and treat vaccine adverse reactions.

1.2. Current vaccine coverage levels

Vaccination coverage estimates for children aged 19-35 months were at or near record highs in 2009, with the exception of \textit{Haemophilus influenzae} type b (Hib) vaccine, which was in shortage during this period. Overall, excluding vaccines recommended recently for universal use (i.e. hepatitis A, rotavirus and influenza), coverage for the remaining vaccines was 70% (excluding Hib), increasing to 78% when pneumococcal conjugate vaccination was excluded from the assessment. For individual pediatric vaccines, up-to-date coverage levels range as low as 44% for rotavirus vaccine to a high of 93% for poliovirus vaccine (Table 2)\(^6\). In general, vaccines more recently recommended for universal use in children (hepatitis A, rotavirus) have lower coverage levels than vaccines for which universal use recommendations have been in place for a longer period.

Similarly, for more recently recommended adolescent vaccines (e.g., human papillomavirus [HPV] vaccine, meningococcal conjugate vaccine)\(^6\) and adult vaccines (e.g., herpes zoster vaccine)\(^7\), coverage levels are lower (Table 3), though they have been steadily increasing in recent years. Some reports have
indicated that concerns over the safety of these newer vaccines may impact uptake8,9, but it is not clearly known what impact these concerns have on uptake of these more recently recommended vaccines. Recent NVAC recommendations targeted to adolescent10 and adult immunization10 have called for increasing awareness of vaccine safety issues in these populations.

1.3. Successes of the current vaccine safety system in the US

The vaccine safety system is a large, complex system comprised of many components spanning the entire life-cycle from basic vaccine research, development, testing, licensure and widespread use (Figure 1). A detailed analysis of the composition and functions of the US vaccine safety system is presented in Section 4.2. Through this complex framework, the vaccine safety system has proven to be a sound system for identifying, evaluating and responding to vaccine safety issues that have emerged.

1.3.1. Vaccine safety system activities leading to changes in vaccine recommendations

As stated above, there may be risks associated with any medical product, and there are several prominent examples where information from the vaccine safety monitoring system in the U.S. has been used to change vaccines and vaccination recommendations. A few examples of these are presented below.

Polio Vaccine

The oral polio vaccine (OPV) offered two main advantages over the inactivated polio vaccine (IPV): 1) a more robust immune response including induction of better intestinal immunity and 2) the possibility of secondary immunity in household contacts and unvaccinated child contacts exposed to attenuated polio virus shed by children who received OPV. However, the use of OPV is also associated with approximately one case of vaccine-associated paralytic polio (VAPP) per 750,000 first doses of OPV, with an overall incidence of once case of VAPP per 2.4 million doses of OPV. As polio disease was eradicated in the Western Hemisphere, the benefit/risk equation of polio vaccination changed, as more cases of polio were caused by OPV than by circulating virus. Therefore, in 2000 the Centers for Disease Control and Prevention (CDC) recommended replacing all use of OPV in the US with IPV11.

Pertussis vaccine

Because rare but serious adverse events occurred following receipt of the diphtheria/tetanus/whole-cell pertussis (DTP) vaccine, an acellular pertussis vaccine combined with diphtheria and tetanus toxoids was developed and approved for use. This acellular pertussis-containing vaccine was found to be associated with a lower level of both minor and major adverse events, compared to whole cell-pertussis-containing vaccines12. Acellular pertussis containing vaccines replaced whole cell pertussis vaccines for use in young infants in the US in 199713.

Rotavirus vaccine

The association of the first licensed rotavirus vaccine (tetravalent rhesus-based rotavirus vaccine, Rotashield®) and intussusception events was recognized and investigated using a combination of pre-licensure trial data, Vaccine Adverse Event Reporting System (VAERS) reports, Vaccine Safety Datalink (VSD) analysis and focused epidemiologic studies. This vaccine was withdrawn from use within 12 months of licensure. The experience demonstrated the difficulty of detecting low frequency events (estimated excess risk of 1 intussusception event per 10,000 rotavirus vaccinations14) during pre-licensure clinical trials, and led to changes in the subsequent phase III and IV vaccine trials to increase sample size to better detect intussusception15. In Mexico and Australia, there has been some evidence of an increased risk of intussusception following use of the more recently licensed rotavirus vaccines; while no increased risk has been seen in the US, the pediatric population under surveillance is too small to rule out an increased risk as small as that seen outside of the US14.

Page 6

V2.0 for Public Comment May 10, 2011
MMR-V vaccine
A modest increased risk of febrile seizures following a first dose of combined measles-mumps-rubella-varicella (MMR-V) vaccine compared to individual measles-mumps-rubella (MMR) and varicella vaccines administered separately was recognized in 2008 through post licensing surveillance, with these post-licensure studies determining the risk to be an additional 4.3 febrile seizures per 10,000 MMR-V doses, compared to MMR and varicella vaccines administered separately. For the first dose of vaccine given at 12-47 months, CDC now recommends that although either can be used, “unless the parent or caregiver expresses a preference for MMRV vaccine…MMR vaccine and varicella vaccine should be administered as separate injections”.

1.3.2. Vaccine safety system activities providing reassurances of safety

In addition to identifying risks of vaccines, the current US vaccine safety system has been able to provide reassurance in instances when the safety of new vaccines was questioned. There have been many signals that, following investigation, were found not to be causally related to vaccination. Two examples are presented below.

Meningococcal vaccine
Initial VAERS reports of Guillain-Barre Syndrome (GBS) following receipt of the quadrivalent meningococcal conjugate vaccine (MCV4) shortly after its introduction in 2005 led to the development of the ad hoc Meningococcal Vaccine Study, a distributed research network utilizing medical records from multiple health insurance providers. Analysis of health care utilization by over 12 million adolescents and young adults identified 99 GBS cases, none of which occurred within 6 weeks of MCV4 vaccination, indicating no evidence for a causal link between MCV4 receipt and GBS.

2009 H1N1 influenza vaccine
Illustrating the flexibility of the current vaccine safety system to respond to the need for accurate and timely safety data during the rapid deployment of monovalent vaccines against the pandemic 2009 H1N1 influenza virus, additional coordination of the various safety information collection systems was enhanced with innovative approaches to monitoring of vaccine safety in this unusual context. The NVAC reviewed preliminary federal plans for monitoring H1N1 vaccine safety and made a series of recommendations to the HHS, all of which were carried out. These included development of a formal written plan for safety monitoring, additional active surveillance activities and an independent risk assessment committee, under the auspices of the NVAC, reporting to the ASH.

In preparation for the 2009 H1N1 influenza vaccination program, existing vaccine safety monitoring infrastructure was enhanced and new capacity was created to increase the sensitivity of the system to detect rare AEFI. Included in these enhancements were active surveillance for GBS through the CDC Emerging Infections Program (EIP) and creation of the Post-Licensure Rapid Immunization Safety Monitoring (PRISM) system. GBS surveillance through EIP was designed to address the potential for an H1N1 influenza vaccine-GBS association, as hypothesized after the 1976-7 national influenza immunization program. PRISM linked immunization registries in a number of states with the databases of large health maintenance organizations to increase the size of the population under active surveillance, creating an increased ability to monitor those in vulnerable groups.

Following the NVAC recommendation to establish a mechanism for independent assessment of the vaccine safety data as it became available, the NVAC Vaccine Safety Risk Assessment Working Group (VSRAWG) was created by the National Vaccine Program Office (NVPO). The VSRAWG reviewed the analysis done by Federal agencies of all of the vaccine safety data (it did not do any analysis itself) and provided HHS and the public regular and independent reports on the safety profile of the H1N1 vaccines. Reports of the VSRAWG were presented to the NVAC in a public forum and posted on the NVAC...
For analyses that have been completed, initial findings of possible weak signals since April 2010 were examined in more detail, and it was determined that there were not vaccine safety signals. Some evaluations (e.g., the EIP GBS study) are still underway, and the VSRAWG has not yet issued its final report.

1.4. Challenges and opportunities to the current vaccine safety system

Despite its success, the current US vaccine safety system faces a number of challenges and opportunities. It is important to note that the terms “challenges” and “opportunities”, as used here, should not be viewed with a negative connotation. Rather, they reflect the evolving nature of science and medicine, including recent biomedical and technological advances that may present new opportunities to better understand the epidemiology or underlying mechanisms of vaccine adverse reactions. Integrating these advances into the existing vaccine safety system, as a type of continuous quality improvement (CQI), is a necessary function of evolving technology and knowledge. CQI is a key component of many healthcare and public health areas, and should be considered as a model for vaccine safety as well.

1.4.1. Changes in the perception of benefit and risk of vaccines

Unlike most medical products, vaccines are given to healthy individuals to prevent disease. As a consequence of the success of vaccines in decreasing or eliminating infectious diseases, the relative weight given to the perceived risk of infectious diseases compared to the risk of vaccine adverse effects has changed over time. With fewer cases of vaccine-preventable diseases occurring following successful immunization programs, health care providers and the public have less familiarity with these diseases. A case in point is measles, a once familiar and sometimes severe disease. Most parents of young children and most health-care providers who completed medical training after the last severe measles outbreaks in the United States in 1989-91 have little familiarity with measles, which may decrease the urgency of parents to seek vaccination for their children. This change in the perception of the vaccine benefit/risk equation leads to the need for clear education about the magnitude of the risks of vaccines and diseases and better understanding of this balance on the part of parents and providers.

With many vaccines recommended for children, who are considered a vulnerable population, and the existence of state-level vaccination mandates for school entry, parents may weigh this balance as a comparison between errors of commission (vaccine adverse reaction that may occur during the process of protecting the child from a vaccine-preventable disease) and errors of omission (vaccine preventable disease occurring in the absence of vaccination). In recent years, public concerns about vaccine safety appear to have increased. Vaccine safety concerns that have resulted in postponed vaccination or vaccination refusal include too many vaccines given at one time and the presence of ingredients perceived to be unsafe. Similarly, concerns over possible side effects from the 2009 H1N1 influenza vaccine were a commonly cited reason for adults not getting themselves or their children vaccinated. In one study in 2000, approximately one fifth of parents surveyed did not think that immunizations had been proven safe before they were approved for use and that children received more immunizations than are good for them.

The reasons for concern about vaccines are not completely understood but may be related to a wide variety of factors, such as the changing perceptions of the benefit/risk balance of vaccination, general distrust in government, decreased time for primary health care providers to educate patients, lack of a clear understanding of background rates of adverse event outcomes and the potential for temporal associations that may not be causal, and the ready availability of both accurate and inaccurate information on the internet. While physicians are most commonly cited as the most trusted source of medical information, information seeking on the internet is increasingly common, and can be associated with decisions to delay vaccination due to vaccine safety or efficacy concerns.
Anything that leads to vaccination delays or refusal to vaccinate can pose a significant risk not just to the unvaccinated individual but also to public’s health because of the potential to decrease coverage levels below levels needed for community, or “herd”, immunity. Community immunity resulting from high levels of vaccine coverage is necessary to interrupt disease transmission and protect those in the population who cannot be vaccinated or for whom vaccination did not induce protection. It is a key public health strategy to reduce and control vaccine preventable diseases. This concept may be hard to explain, as one cannot usually predict who will be exposed to these diseases or develop serious complications. When disease levels in the population are low, it may be difficult to communicate why we need to continuously maintain high immunization rates. Vaccine hesitancy, either through vaccination delays or refusals, resulting in lowered community immunity may have played a role in recent outbreaks of measles in California and Hib in Minnesota.

Vaccine safety concerns are not new; concerns about vaccine safety were expressed as far back as the 1700s, relating to the first vaccine against smallpox. Concern regarding the whole-cell pertussis vaccine in the 1970’s and 1980’s led to reductions in immunization coverage and resurgence of the disease in England and other countries. Following concerns about the hypothesized association between the MMR vaccine and autism in the United Kingdom (UK), which were judged to be based on ultimately unsubstantiated results, MMR vaccination rates in the UK dropped steadily, from 92% in 1995-6 to a low of approximately 80% in 2003-4, with related increases in measles cases.

Studies of children whose vaccinations are either delayed or not received at all consistently find vaccine safety cited as a common reason. As stated above, coverage levels for individual immunizations in the US are at or near all-time highs, with only approximately 0.6% of children 19-35 months receiving none of the recommended vaccines. However, the numbers of personal belief or philosophical exemptions for vaccines are increasing in states that allow philosophical exemptions or other broad exemptions to school immunization requirements.

1.4.2. Complexity of the vaccine safety enterprise

Considering the large number of Federal and non-Federal entities involved in vaccine safety, described in detail in Section 4.1.1 of this report, one of the key challenges is the coordination of activities across these groups, as well as transparent reporting of activities related to vaccine safety. With a lack of coordination, there may be both redundant efforts as well as missed opportunities to take advantage of new information or lines of research. This was clearly described in the 1998 Final Report and Recommendations of the Task Force on Safer Childhood Vaccines, which called for the Inter-Agency Vaccine Group (IAVG) to have the ongoing responsibility of coordinating vaccine safety activities, with guidance from an external independent advisory committee. More than a decade later, coordination of vaccine-related activities was again highlighted during the revision of the National Vaccine Plan, in the initial letter report from the Institute of Medicine (IOM) to NVPO as well as the final IOM recommendations on priorities in the National Vaccine Plan.

1.4.3. Advances in biomedical science

The benefit/risk comparisons and system complexity described in this report speak to the need for excellent vaccine safety science and a strong vaccine safety system that can take advantage of modern biomedical and epidemiologic science. Such improvements may also increase public and provider confidence in the safety of vaccines and the safety system.

Advances in biomedical science, both vaccine science and basic research, and epidemiologic methods present great opportunities and challenges for vaccine safety science. Vaccine safety research often
involves studying rare outcomes, many of which also occur without vaccine exposure. This is best illustrated with the use of pediatric vaccines. Early childhood is a time when children are at greatest risk of several infectious diseases and consequently benefit most from vaccination. However, early childhood is also a period of rapid development, and many health problems or other conditions may first become manifest during this time of intensive vaccination, making it difficult to determine if an apparent association with vaccination is real or coincidental. Thus, a fundamental scientific challenge is “causality assessment”, which seeks to determine whether the vaccine is contributing to the disease burden, and if so, to identify how much, among whom, and importantly, why. To ensure rigorous science, negative studies also often have to be replicated using different methods or among different populations.

New technologies, such as high-throughput sequencing, provide an opportunity to improve vaccine manufacturing and quality. Paradoxically, they can also raise concerns about vaccines. In early 2010, sequencing for genetic material from adventitious viruses identified the presence of porcine circovirus type 1 (PCV-1) DNA fragments in two live, attenuated rotavirus vaccines. While PCV-1 is not a human pathogen, this finding triggered a rapid response to assess if there was any impact of this viral contamination. Findings presented to the Vaccines and Related Biological Products Advisory Committee (VRBPAC) were reviewed and the Food and Drug Administration (FDA) determined that it was appropriate for clinicians and health care professionals to resume the use of Rotarix and to continue the use of RotaTeq.

1.4.4. Technological advances in epidemiologic methods and medical records

The need for improved science was illustrated by the work of the Immunization Safety Review Committee of the IOM (2001-2004). For 18 of the 30 (60%) recent vaccine safety questions (does vaccine X cause adverse event Y), the committee found that “the evidence is inadequate to accept or reject a causal relationship.” The committee found that incomplete understanding of biological mechanisms for AEFIs was a particular weakness. The recently approved Scientific Agenda developed by the CDC Immunization Safety Office (ISO) proposes to address many of the unanswered epidemiologic questions, yet the scope is limited to activities within the ISO. It does not lay out a national agenda or engage additional scientific resources. Through the FDA Sentinel Surveillance program, a larger proportion of the US population will be under active surveillance for drug and vaccine-related adverse events, though the implementation details for this program are still under development.

Increasing use of immunization information systems (IIS) and the development of new barcoding technology (e.g., 2-D barcodes) to track administered vaccinations, coupled with a wider use of electronic medical records offers a technological advance for epidemiologic research on AEFI. Because vaccine studies can be subject to reporting and recall biases, it is important to obtain accurate and complete data on the timing of vaccinations and diagnoses of potential adverse events. Additionally, with a highly mobile society and the lack of a consistent medical home for some individuals, these electronic data systems present a reliable way to track immunizations, which can aid in both monitoring temporal associations with adverse events, correct identification of vaccines and lots administered and helping to prevent duplicate vaccinations due to a lack of vaccination records.

1.4.5. Era of personalized medicine and more empowered patients

New advances in immunology, genetics, molecular biology, and bioinformatics hold great potential for better understanding human responses to vaccines broadly, within subpopulations, and in individuals. Advances in personalized medicine for medical products and patient safety are underway: there are tests available to detect particular genetic polymorphisms known to be related to drug metabolism, adverse responses, or interactions between drugs. These have already resulted in regulatory changes for labeling
and prescribing58. Increased understanding of individual risk factors for adverse reactions may lead to more individualized vaccination strategies.

Additionally, with increased access to health and medical information from a variety of sources, including the Internet, patients may come to physicians with more questions about their medical care and may be more willing to question their provider’s decisions. This concept of the “empowered patient” can lead to a successful partnership with physicians59, provided that the information given to the patient is accurate and meets the needs of patients.

2. Organization of the Vaccine Safety Working Group

2.1. Current charge to the Vaccine Safety Working Group

To obtain expert advice on bringing the vaccine safety system into the 21st century, the ASH asked the NVAC “to review the current federal vaccine safety system and develop a White Paper describing the infrastructure needs for a federal vaccine safety system to fully characterize the safety profile of vaccines in a timely manner, reduce adverse events whenever possible, and maintain and improve public confidence in vaccine safety”. The NVAC VSWG was tasked to address this charge in July 2009.

2.2. Vaccine Safety Working Group membership

The VSWG was comprised of 18 members, 9 of whom were current or past NVAC members. The VSWG has a broad range of expertise including pediatric and adult infectious diseases, genomics, immunology, epidemiology, public health, maternal and child health, pharmacoepidemiology, and biostatistics. Additionally, current or past consumer representatives from each of four federal advisory committees with a role in vaccine safety (NVAC, Advisory Committee on Immunization Practices [ACIP], VRBPAC, and Advisory Commission on Childhood Vaccines [ACCV]) are members. Additionally, 10 Federal ex officio members provided information about aspects of the existing safety system. The Federal ex officio members did not participate in development of the Working Group’s conclusions and recommendations, and the conclusions and recommendations in this report do not reflect their or their agencies’ points of view.

The VSWG roster is presented in Appendix 2 and the Federal ex officio members are listed in Appendix 3.

3. VSWG Methods for Addressing its Charge in Light of Prior Reviews

3.1. Prior reviews of the vaccine safety system

3.1.1. HHS Activities and Related Reviews by NVAC

Previously, there have been several federal efforts to enhance the nation’s vaccine safety system. The broadest reaching of these reviews was the 1998 Final Report of the Task Force on Safer Childhood Vaccines44. This Task Force, convened by the National Institutes of Health (NIH), made four recommendations, calling for (1) greater assessment of concerns about vaccine safety, (2) strengthening research into developing safer vaccines, (3) increasing surveillance related to vaccine safety and efficacy, and (4) coordinated review and assurance related to Federal vaccine safety efforts. In 1999, the NVAC reviewed and strongly endorsed the Vaccine Safety Action Plan, the formal implementation plan for the 1998 Task Force report60. In the intervening years, there has been at least partial implementation of these recommendations, though the lack of a sufficient budget process hampered full implementation of this
Action Plan. Additionally, the extent to which vaccine safety assurance functions coordinated and/or conducted through the IAVG have been carried out is not transparent or readily communicated to the public. In 2008, the Immunization Safety Task Force (ISTF) highlighted a series of opportunities for enhancements in the vaccine safety system.

3.1.2. Reviews by IOM

The recently released IOM report “Priorities for the National Vaccine Plan” identified four high priority vaccine safety actions that were largely consistent with earlier recommendations. These included (1) establishment of a process for identification of potential vaccine safety hypotheses for further study from annual reviews of data from VAERS, VSD, CISA, the VICP and from information from outside the US; (2) developing a framework for prioritizing a national research agenda; (3) creation of a permanent vaccine safety subcommittee in NVAC for ongoing review and guidance on vaccine safety issues; and (4) expansion and enhancements of vaccine safety science research through CDC ISO, FDA and NIH.

3.1.3. Vaccine Safety Working Group Review of CDC ISO Scientific Agenda

The NVAC VSWG was established in April, 2008 with a charge to review CDC ISO Draft Scientific Agenda (Charge 1). Specifically the VSWG was asked to provide advice on the content of the ISO draft research agenda, the prioritization of research topics, and possible scientific barriers to implementing the research agenda with suggestions for addressing them.

The NVAC VSWG review of the CDC ISO research agenda provided the opportunity for a coordinated review of vaccine safety research activities, though it was limited to activities occurring through the ISO. Areas of broader applicability than just the ISO research agenda were identified and retained as key elements of the present review. The VSWG, with the assistance of NVPO and the Keystone Center, conducted several sessions to engage the public and stakeholders as part of this charge. The VSWG’s recommendations were approved by the full NVAC on June 9, 2009 and transmitted to the ASH and the CDC. Of note, in that report, the VSWG stated that there was a need for a similar safety agenda to be developed and coordinated across the entire vaccine safety enterprise. The report noted that “there is a strong need for a federal vaccine safety research agenda that encompasses research undertaken by non-ISO CDC offices, FDA [Food and Drug Administration], and National Institutes of Health (NIH) and requires increased collaboration and coordination between all federal agencies with a stake in vaccine safety.”

3.2. VSWG Meetings

The VSWG held a kick-off meeting for its current charge (Charge 2) on July 15-16, 2009, at which 26 invited participants with a broad range of expertise (Appendix 4) shared their views on:

1. Principles and policy alternatives for a robust vaccine safety system
2. Identifying innovative ways of overcoming gaps in vaccine safety science infrastructure
3. The ideal system to meet the needs of the public, public health, and healthcare professionals for confidence in vaccine safety
4. Lessons from other safety arenas
5. Enhancing the adoption and implementation of the forthcoming white paper

Following the July 2009 kick-off meeting, the entire VSWG met regularly, with 18 conference call meetings and two in-person meetings. In addition to regular working meetings to discuss and deliberate topics under consideration, the working group also received a series of presentations that provided information on a number of broad-scale vaccine safety topics.
These presentations to the full VSWG included: international vaccine safety systems (Gary Freed, University of Michigan; Hector Izurieta, FDA; and Steve Black, Cincinnati Children’s Hospital), vaccine safety efforts at the World Health Organization (Patrick Zuber, World Health Organization [WHO]), PRISM (Richard Platt, Harvard Pilgrim Health Care and Harvard Medical School), public attitudes toward vaccines (Kathy Talkington, Association of State and Territorial Health Officials [ASTHO]), and the state of the science for assessing public perceptions of vaccine safety (Allison Kennedy, CDC).

3.3. VSWG Subgroups

To accomplish its task of reviewing the current system and identifying an improved system for the 21st century, the VSWG created three content-oriented subgroups for targeted information gathering and process development. The subgroups focused on 1) biological mechanisms of adverse events, 2) epidemiology and surveillance of adverse events, and 3) structure and governance of the vaccine safety system. Each subgroup elected a Chair, and subgroup membership was based on VSWG member expertise and preference. Summaries of subgroup meetings and information gathering are presented below.

3.3.1. Biologic basis of vaccine adverse events (Biomechanisms) subgroup

The Biomechanisms subgroup was chaired by L.J. Tan. The four main topic areas addressed when examining biological mechanisms of adverse events are: (1) hypothesis generation, (2) causality assessment, and (3) identification of persons who may be at increased risk for adverse reactions and (4) appropriate management of specific adverse events. This group focused on basic and laboratory science, genomics, and resources for addressing these topic areas. Specific topics examined included research on biological mechanisms underlying vaccine adverse events, genetic risk factors and environmental triggers, biomarkers, and prevention and treatment of vaccine adverse events. The role of NIH in vaccine safety research was also discussed.

The biomechanisms subgroup held four working meetings and six information gathering meetings. A summary of the presentations received during the information gathering meetings is in Appendix 5.

3.3.2. Epidemiology to detect, quantify, and examine causality of vaccine adverse events (Surveillance and epidemiology) subgroup

The Surveillance and Epidemiology subgroup was chaired by Lance Gordon. The five main topic areas addressed when examining surveillance data and epidemiologic studies on adverse events are (1) identifying adverse events that occur with a temporal relationship to immunization for additional follow-up (“signal detection”, “hypothesis generation”), (2) examining the detailed epidemiology of these AEFI to determine the strength of association, if any, with immunization (“hypothesis testing”), (3) monitoring the occurrence of specific known or hypothesized vaccine adverse reactions to identify changes in patterns across time or populations, (4) providing feedback and guidance to other components of the vaccine safety research system, such as laboratory or clinical investigators, and (5) properly and adequately reporting results of epidemiologic and surveillance data to policy makers, scientific communities and the public.

This group focused on the pre- and post-licensure infrastructure for vaccine safety research, identifying gaps, and suggesting enhancements. Topics discussed included passive and active surveillance infrastructure, pre-licensure and post-licensure research, epidemiologic needs, novel information technology, new statistical methods, and resources for these activities. Consideration was given to new platforms and infrastructure to conduct vaccine safety research that do not yet exist or have not traditionally been utilized in the area of vaccine safety.
The surveillance and epidemiology subgroup held seven working meetings and eight information gathering meetings. A summary of the presentations received during the information gathering meetings is in Appendix 6.

3.3.3 Structure and governance subgroup.

The Structure and Governance subgroup was chaired by William Raub. This group focused on topics related to the structure, oversight, resources, and processes for the vaccine safety enterprise. Topics discussed included transparency, mechanisms for engaging and involving the public and stakeholders, objectivity, organization, funding, authority, coordination, and responsibilities. The structure and governance subgroup met for 11 working meetings.

3.4 Development of recommendations

A list of major themes developed from the July 15-16, 2009 meeting served as a starting place for the VSWG’s deliberations. The list of potential items to be addressed ranged from very specific to very general, with some examples repeated across general topic areas. Further discussion and refinement of the initial list by the VSWG Structure and Governance subgroup led to a more condensed list that served as the basis for crafting directed and actionable recommendations for making improvements to the vaccine safety system.

Additionally, recommendations were initially developed by each of the content-oriented subgroups. Once each subgroup’s recommendations were initially refined, they were collated with those of the other subgroups and presented to the full VSWG for consideration. Further discussion among the working group was used to clarify the scope and intent of the recommendations.

3.5 Stakeholder and public input

Concurrent with information gathering, the VSWG (with the help of the Keystone Center, an external consultant) participated in a stakeholder engagement process. Following a robust public and stakeholder engagement process during Charge 1, the VSWG again desired to hear from a variety of stakeholders. The Stakeholder Engagement Subgroup of the VSWG assisted in the planning and execution of the Keystone-led engagement activities. In addition to the Kick off meeting, the VSWG participated in a “Writing Group” meeting that included a broad range of representation from a number of pertinent sectors. This group worked with the VSWG to refine a set of “Evaluation Criteria” (Appendix 7) that would be used to assess how well different safety system configurations would fit the proposed functions and attributes of an ideal vaccine safety system. The Writing Group also provided input on opportunities for improvement in the vaccine safety system, and strengths and weaknesses of various enhancements or alterations to the structure and governance of the vaccine safety system. The group agreed on a set of functions (Appendix 8) and essential attributes (Appendix 9) for the ideal vaccine safety system. A memorandum listing the meeting attendees and summarizing the outcomes of the meeting is presented in Appendix 10.

Information obtained from the public comment period and a stakeholder’s meeting on June 13, 2011 will be included in the final report.
4. Findings and Results

4.1. General background

4.1.1. The National Childhood Vaccine Injury Act

The foundation of the modern US vaccine safety system infrastructure is the National Childhood Vaccine Injury Act of 1986 (NCVIA). The NCVIA authorized the creation of the National Vaccine Injury Compensation Program (VICP) and VAERS and authorized the establishment of the National Vaccine Program and the NVAC. Additionally, the NCVIA mandated IOM-led studies of the relationship between vaccination and adverse events as well as requiring the development of “vaccine information materials” by CDC, leading to the development and distribution of Vaccine Information Statements.

The ASH was appointed Director of the National Vaccine Program, and the NVPO was created to coordinate and integrate the efforts of the National Vaccine Program as the agent of the ASH. The current vaccine safety system, as it has evolved since the passage of the NCVIA, encompasses a complex mix involving multiple Federal departments and agencies as well as non-federal partners such as academia, industry, immunization providers and their professional organizations, state and local health departments, and health care payers.

4.1.2. General system framework

The key Federal departments and agencies with a role in vaccine safety activities include HHS, encompassing the CDC, the FDA, the Health Resources and Services Administration (HRSA), the NIH, the Centers for Medicare and Medicaid Services (CMS), the Indian Health Service (IHS) and the NVPO; the Department of Defense (DOD) and Department of Veterans Affairs (DVA). The relationships between these Federal components of the vaccine safety system are illustrated in Figure 1.

Vaccine safety activities occur both pre-licensure and post-licensure. Pre-licensure functions include vaccine discovery, laboratory, and animal research and human clinical trials to determine whether or not the vaccine has sufficient safety and efficacy to merit licensure. Because it is not feasible to adequately power pre-licensure clinical trials for the identification of rare adverse events (for example, GBS incidence of 1-2/100,000), additional evaluation is required after vaccine licensure and widespread use. Post-licensure functions include evaluation of post-licensure vaccine efficacy and safety studies in the larger population when a vaccine is in wide-spread use, determining if there is a causal relationship between vaccination and adverse events, investigating the biologic basis of vaccine adverse reactions, and providing compensation for vaccine-related injuries.

4.2. Review of the vaccine safety system

4.2.1. Coordination of the system

To facilitate addressing concerns about vaccine safety, the Federal ISTF was formed at the request of the Secretary of HHS in April 2008. The ISTF contains representatives from the aforementioned agencies and departments. The extent of involvement of this high level group in coordination, funding, and setting of research agendas was not clear to the VSWG in its review. However, experience with vaccine safety surveillance for the monovalent H1N1 influenza suggests that the ISTF’s potential for effective collaboration, planning and investigation is promising. A detailed review by the ISTF of the components of the current federal vaccine safety system may be found at http://www.hhs.gov/nvpo/nvac/subgroups/vaccine-safety-review.pdf. However, some agencies with roles in immunization delivery and vaccine safety, particularly as became apparent during enhanced vaccine
safety monitoring activities of the H1N1 influenza vaccination campaign (e.g., IHS) may not be fully represented through the National Vaccine Program or on the Immunization Safety Task Force. The ISTF does not meet regularly or issue routine reports, and has never provided any direct reports to the NVAC.

The ASH, in his role as Director of the National Vaccine Program, is charged under the NCVIA to “coordinate and provide direction for activities carried out in or through the National Institutes of Health, the Office of Biologics Research and Review [now Center for Biologics Evaluation and Review (CBER)] of the Food and Drug Administration, the Department of Defense, and the Agency for International Development to develop the techniques needed to produce safe and effective vaccines”; and “coordinate and provide direction for safety and efficacy testing of vaccines carried out in or through the National Institutes of Health, the Centers for Disease Control, the Office of Biologics Research and Review of the Food and Drug Administration, the Department of Defense, and the Agency for International Development.” The operational arm of the National Vaccine Program, responsible for carrying out these activities, is the NVPO, which is in the Office of the ASH, HHS.

4.2.2. Basic biomedical research

While knowledge of immune system function has increased dramatically in recent years, much more basic research needs to be done on the actual biological mechanisms that drive a successful immune response to vaccine as well as the mechanisms underlying vaccine adverse reactions, how quality of the antigen affects the response, how adjuvants enhance the response to vaccines and how their use may affect the vaccine safety profile. The IOM Immunization Safety Review Committee has cited a lack of information on the biology underlying vaccine adverse reactions. One potential pathway for basic biomedical research related to vaccine adverse reactions is to study triggers of more common, less severe reactions (e.g., fever, allergy) to identify common mechanisms that may help focus research into rarer reactions while also helping to identify means to ameliorate these reactions. In addition, with the increasing availability of new research technologies, an achievable goal may be to define mechanisms that tip the balance toward a detrimental adverse response to immunization; in particular, why certain individuals may react adversely while others respond positively to a given vaccine.

Basic research on the immunologic and physiologic effects of vaccines and vaccine ingredients is typically funded by NIH and vaccine manufacturers, and conducted by academia and industry. Much of the work of the NIH is organized on a disease-specific basis; applicable funding has been dedicated to the Novel Adjuvant Discovery and Development program, through targeted contracts, such as the Human Immune Phenotyping program, and a recent vaccine safety program announcement.

Basic research, including immunology research, which may not be vaccine-focused, is critical to advance knowledge. By considering the biologic role of the antigenic and the non-antigenic components of a vaccine, one can generate useful hypotheses about the cause of an adverse reaction to the vaccine that can be tested in well-designed non-clinical, clinical and epidemiological studies. The NVAC has previously recommended that “ISO should evaluate cumulative levels of non-antigen component exposure possible through the schedule of recommended vaccinations… a carefully designed screening process that places ingredients into groups that are of: (1) minimal concern; (2) potential for concern and deserving of research; (3) in need of further risk analysis and consideration for risk management.” While the NVAC has no specific concerns regarding non-antigen components of vaccines, this approach to screening is more transparent and allows targeting of research efforts to specific components based on scientific assessment.

Basic research can also be vaccine-focused/targeted. An example of this type of targeted research involves the concerns raised in 1999 regarding infant exposure to ethyl mercury as a result of thimerosal used as a preservative in some vaccines, with subsequent epidemiological studies including outcomes.
associated with (methyl) mercury. However, a lack of basic research on the comparative biological effects of and clearance of ethyl mercury and methyl mercury impacted the public health response to concerns regarding the safety of thimerosal in 1999. The identified need for these targeted biomedical studies led to research done since 1999 on the metabolism of ethyl mercury. CDC studies examining thimerosal-containing vaccines and neurodevelopmental outcomes, including autism, have not found evidence to support an association between thimerosal-containing vaccines and autism. These types of feedback mechanisms between basic biomedical research and epidemiologic research are critical to identifying priority study areas in both fields.

4.2.3. Vaccine development/pre-licensure activities/clinical trials

The NIH plays a role in vaccine discovery and in early phase clinical evaluation through the Vaccine and Treatment Evaluation Units (VTEUs). Before biologics such as vaccines are licensed for marketing, they must undergo extensive clinical trials for efficacy and safety. The FDA’s CBER is responsible for working with industry from preliminary application through clinical trials leading to licensure. A key area of vaccine development and pre-licensure activities is animal and toxicology studies conducted prior to beginning clinical trials. One example of these extensive tests were the studies on Madin-Darby Canine Kidney (MDCK) cells proposed for use in cell-culture influenza vaccine development.

Randomized, double-blind, placebo-controlled trials are the gold standard for research, as they attempt to control for differences in characteristics across populations and reduce biases. Pre-licensure trials are designed to estimate the efficacy of the vaccine itself and in combination with other vaccines and are often powered to identify common AEFI; however the samples sizes of the trials are relatively small when compared to the larger population for which the use of the vaccine is intended. This may preclude identification of very rare AEFI. Even with tens of thousands of clinical trial participants, the power to see rare AEFI is low. The combined clinical trials for the quadrivalent HPV vaccine contained approximately 20,000 total participants (approximately 11,000 in the vaccine group and 9,000 in the placebo group, though the target population for this vaccine, 9-12 year olds, made up only a subset of this larger sample). With this sample size, the power to observe an increased risk of vaccine adverse reactions from 1/1000 to 2/1000 vaccinees is only 43%. These limitations can be overcome with enhanced monitoring after the vaccine is licensed, where a larger population will be provided the vaccine; however, this does eliminate the possibility to control through randomization. Even with a reduced capacity to identify all vaccine-associated adverse reactions, clinical trial data are useful to indicate more common AEFI as well as potential vaccine adverse event signals to monitor post-licensure.

Additionally, follow-up monitoring for safety related events during pre-licensure clinical trials is time limited. Delayed onset adverse events are unlikely to be detected in initial clinical trials. One immunogenicity and safety study of the bivalent HPV vaccine reported the results of active monitoring of participants up to 12 months from the start of the study, with additional clinical trial follow-up to observe long-term safety, with long-term safety assessed after multiple years. Furthermore, clinical trials are generally conducted in healthy individuals and are not representative of the full populations that will ultimately be vaccinated (which may include groups such as pregnant women and individuals with chronic diseases). However, those excluded from clinical trials may have unique immunological responses that increase or decrease risk for vaccine adverse reactions. Some of these clinical trial exclusions are related to instances when the vaccine will not be used in specific populations (e.g., contraindication for use of live viral vaccines in pregnant women).

4.2.4. Vaccine licensure

The vaccine licensing process includes an extensive evaluation of vaccine safety data; however, licensing activities were outside of the scope of this working group, and no targeted information gathering on this
process was performed. The VSWG will not be making any recommendations specifically addressing the licensing process, focusing rather on the vaccine safety activities occurring before and after licensure.

4.2.5. Post-licensure activities

Studying the epidemiology of AEFI is a difficult and complex task that involves addressing a number of issues including: 1) clearly defining and characterizing AEFI, 2) determining the expected background rates of health events under study to compare with observed rates following vaccination, 3) developing methods to study very rare outcomes and the associated need for very large study sample sizes, 4) distinguishing between AEFI that are caused by the vaccination and those that occur coincidentally or are the result of multiple cofactors or predispositions, and 5) determining whether subgroups of people may exist who are at increased risk for AEFI due, for example, to underlying disease or genetic predisposition.

4.2.5.1. Surveillance/signal detection/hypothesis generation

While the terms are sometimes used interchangeably, surveillance and epidemiologic studies are not identical. Surveillance is defined by the CDC as “the ongoing systematic collection, analysis and interpretation of health data, essential to the planning, implementation, and evaluation of public health practice, closely integrated with the dissemination of these data to those who need to know. The final link in the surveillance chain is the application of these data to prevention and control. A surveillance system includes a functional capacity for data collection, analysis, and dissemination linked to public health programs.” While in the discussion of surveillance is the notation that “surveillance is the essential feature of epidemiologic practice.” Surveillance systems are the primary source for the outcome data used in the post-licensure vaccine safety research system. However, their usefulness is defined by the quality of the data collected and the ability to use these data to perform appropriate analyses. Surveillance data alone cannot usually prove causation, but suggests hypotheses for further study by laboratory, clinical, and/or epidemiologic methods.

Epidemiology is defined as “the study of the distribution and determinants of health-related states or events in specified populations, and the application of this study to control of health problems.” Epidemiologic studies start with hypotheses suggested by surveillance data as well as other data streams such as 1) underlying biological mechanisms of disease and health, 2) the distribution of potential exposures, not limited just to the vaccines received, but exposure to other infectious diseases and environmental and genetic factors, and 3) the population-level background occurrence of outcomes that can also be AEFI, including the examination of determinants of these outcomes absent vaccination.

This section focuses on the surveillance systems that suggest hypotheses that can be tested by epidemiologic analyses.

Vaccine Adverse Events Reporting System (VAERS)

VAERS is a voluntary, post-licensure, national passive reporting surveillance system jointly managed by the CDC and FDA, and serves as an early-warning system to detect adverse events that may be related to vaccines. As a passive system, all reports are made voluntarily and without active, targeted outreach by surveillance system operators, and VAERS reporting can be subject to limitations and biases (described below). The main utility of VAERS is the identification of rare and severe adverse events following immunization, as evidenced by the rapid identification of increased intussusception following administration of the first generation rotavirus vaccine. VAERS receives reports of possible vaccine adverse events from a wide variety of sources including parents, providers, manufacturers, pharmacists and the military. Health care providers and manufacturers are required to report two types of adverse events within a seven-day period – those that the vaccine manufacturer has identified as contraindicating
reactions to the vaccine that are specified within the manufacturer’s package insert and any adverse events present on the Vaccine Injury Table and they are encouraged to report any other adverse event they believe to be clinically important. From 2006-2010, approximately 61% of all domestic reports came from either health care providers or vaccine manufacturers, and approximately 10% came from vaccine recipients or their parent/guardian. In addition, approximately 5% came from State Health Coordinators (CDC, personal communication, 2010).

The strength of VAERS is its ability to detect potential signals for follow-up; this was demonstrated through the identification of an increase in cases of intussusception following receipt of the first licensed rotavirus vaccine. The identification of this signal led to further vaccine safety studies, ultimately resulting in the removal of the vaccine from the market and the development of safer rotavirus vaccines76. While VAERS serves as a national spontaneous reporting system that enables the early detection of signals (potential vaccine safety concerns) and is particularly suited to detect potential rare adverse events that can be more rigorously investigated, there are several key limitations of this system77,78. First, there are not precise denominator data (number of vaccine doses administered/persons vaccinated) to put the number of adverse event reports into context; only the number of doses manufactured or delivered is available. Without denominator data and without information on non-vaccinated individuals, vaccine-associated rates and background rates for comparison cannot be calculated. Second, reporting to VAERS is not always consistent or complete, and underreporting is often cited as a significant problem for some AEFI79,80. Reports that are made to VAERS may not always be complete, and even a fully completed VAERS report form may lack the full range of information needed for epidemiologic analysis. Additionally, increased reporting related to one particular vaccine or adverse event can be stimulated by increased awareness or media reporting of that event81. Newer vaccines often have higher VAERS reporting rates than older vaccines due to heightened awareness of these vaccines and concern over their novelty78. Because of these limitations, VAERS reports alone cannot be used to make population-level causality assessments. If it appears as though a vaccine might be causing a health problem, CDC and FDA will do additional studies or investigations.

Little is known about awareness of VAERS, including the primary function and limitations of the system, by the public or health care providers. While information regarding VAERS is on the Vaccine Information Statements provided with every vaccination, immunizing physicians and nurses may spend little time discussing specific elements of vaccine safety, the vaccine safety system, or VAERS with their patients or their parents82,83. This lack of communication about the uses and limitations of VAERS may influence knowledge of VAERS, leading to inaccurate perceptions, particularly around the inability to perform causality studies within the system, the inclusion of every adverse event that occurs or the perception that VAERS reports trigger public health or medical response to individual adverse events.

4.2.5.2. Signal validation and hypothesis testing

Once a signal is identified and validated, it is tested using methods and systems described below.

Background rates of adverse health events

A specific adverse health event may occur in the absence of vaccination; the rate of such events is called the background or expected rate. To establish whether an adverse event is associated with a vaccine on a population level, it is critical to be able to compare the rates of events with and without vaccines. Background rates may vary by age group, population, geographic location, seasonality, and a number of other important factors that would affect the level of increased risk among vaccinated individuals. To optimize the value of background rates, they should be calculated in populations that are primarily monitored for AEFI, insofar as comparable populations exist.
While some AEFI are more common than others, more severe outcomes of interest often occur very rarely. The annual incidence of GBS is estimated to be approximately 1-2/100,00084,85. Following the 1976-1977 A/Influenza swine influenza vaccination campaign, an increased risk of GBS was identified, leading to hypothesized associations with other influenza vaccines and GBS21,22.

An outcome such as GBS offers another level of complexity, as this condition has been found to develop following infection with microorganisms such as \textit{Campylobacter jejuni}, cytomegalovirus, Epstein-Barr Virus, \textit{Mycoplasma pneumoniae} and Hib. Cases of GBS arising from different antecedent infections that are temporally related to receipt of a vaccine (e.g., influenza infection that occurs during the influenza season when a vaccination campaign is occurring) may be difficult to distinguish from cases of GBS arising from receipt of the vaccine. Issues of recall bias may affect the ability to make this distinction, as a mild respiratory or gastrointestinal illness may be less memorable than vaccination.

\textit{Brighton Collaboration}

A limitation of examining AEFI is the potential for inconsistent definitions of cases or outcomes of interest which can affect the ability to look at results across studies. There is a need for standardized case definitions of AEFI for epidemiologic research. Recognizing this need, the Brighton Collaboration, an international group of volunteers co-sponsored by CDC and WHO, has multiple working groups focusing on case definitions for a variety of AEFI. Case definitions take a few years to be developed and agreed upon, with some evaluation and validity testing following. With widespread development and use of these case definitions, there can be improved comparability across studies.

The Brighton Collaboration has developed and published 24 AEFI case definitions86. While these case definitions can be complex, initial reviews of their applicability have been favorable87,88, and development of checklists and forms that can be validated for use in identifying and reporting AEFI has begun87.

\textit{Linking Hypothesis Generation with Hypothesis Testing}

When performing hypothesis testing, it is important to clearly define the issue under consideration, using the best available evidence and experience. This includes, but is not limited to, refining research questions to include identification of specific confounders, specification of how data are to be obtained and definition of appropriate populations.

For example, because fever was known to occur as part of a common response to the attenuated, live virus MMR and MMRV vaccines, epidemiological studies were developed to describe the rates of post-vaccination febrile seizures89. Compared with use of separate MMR and varicella vaccines at the same visit, use of MMRV vaccine is associated with a higher risk for fever and febrile seizures 5 through 12 days after the first dose among children aged 12 through 23 months (about one \textit{extra} febrile seizure for every 2,300–2,600 MMRV vaccine doses administered)16.

Another example of the \textit{a priori} definition of hypotheses based on potential biological mechanisms for testing involves adjuvanted vaccines. An adjuvant is a non-antigenic component of many vaccines (most commonly alum) that is used to enhance the immune response to the vaccine antigen. However, adjuvants may have the potential to stimulate a broader immunological response that could theoretically lead to an increased risk for autoimmune diseases in some individuals. Because of this potential risk, studies of vaccines that contain novel adjuvants have included epidemiological endpoints that include development of autoimmune diseases90,91.

\textit{Epidemiologic Studies Involving Large Linked Databases}
Because severe vaccine adverse reactions tend to be rare, epidemiologic analysis and hypothesis testing often relies on the extraction of data from large linked databases (LLDB), such as managed care organization (MCO) or health maintenance organization (HMO) data (e.g., claims and administrative data, electronic medical and immunization records). Medical diagnoses used to identify possible AEFI in these LLDB are often coded using the International Classification of Diseases, 9th Revision (ICD-9) system, and for some AEFI, there may be multiple possible ICD-9 codes that could be applied. Because of this, there may be both a need to identify multiple outcomes, depending on the number of hypotheses being tested, as well as many possible reporting codes that could be used for the same outcome. In addition, reliance on ICD-9 codes depends on the diagnostic skills and practices of clinicians and the accuracy of coders, and may be influenced by the availability of specific tests, testing procedures, and billing practices, among other things, making it critical to have access to the medical records for review. As an example, the positive predictive value for GBS, using ICD-9 codes, is approximately 50%

However, one limitation that needs to be considered with the use of LLDB is that the systems from which data are extracted were designed for medical claims and billing, and not for research. The use of LLDB, which is described through the use of examples below, has distinct strengths and weaknesses. Some LLDB contain data on millions of people (“covered lives”), allowing assessment of a large number of individuals relatively quickly. However, the data available may be limited with regard to other factors (environmental, genetic, other health indicators) that may also play a role in the development of the specified condition. To gather these additional data requires medical record review or even direct specific testing, which can be time- and labor-intensive. Complete vaccine exposure data may not be available for all vaccines in the records due to billing practices or lost records or receipt of vaccine outside of the medical home (e.g., in a public clinic). While computerized immunization information systems hold promise for supplementing immunization data, many suffer from incomplete reporting. It may be possible to move beyond traditional LLDB from MCO or HMO to other large-scale data sources, such as studies like the National Children’s Study.

Vaccine Safety Datalink (VSD)

One of the most commonly used LLDB for vaccine safety studies is the VSD. The VSD is the primary system for testing of hypotheses in vaccine safety and is used to determine adverse event rates, assess associations, complete population-based epidemiological studies to address a hypothesis, and contribute to causality assessment. The VSD is a collaborative effort between CDC, 10 MCOs (facilitated by America’s Health Insurance Plans (AHIP)), and academic researchers. The VSD links databases including vaccination and medical records from about 9 million children and adults (about 3% of the US population) and allows for testing of hypotheses and rapid cycle analysis (RCA) for “near real time” surveillance. Data are actively gathered; since the whole population is known, the denominator is known. Because VSD data are obtained based on MCO medical records databases, it is possible to define the population under study, including direct calculations of denominator data.

RCA is an analytical technique whereby data from medical care encounters is monitored and analyzed continuously, to examine the potential association between selected health outcomes and vaccination. By making these comparisons repeatedly, often on a weekly basis, as new immunization and adverse event occurrence data are collected, researchers have the ability to quickly assess potential associations between a particular vaccine and adverse event.

As data are already available from the routine databases of the MCOs, VSD can conduct studies more rapidly than other traditional epidemiologic studies that require the establishment of specific data collection activities. VSD data are suited to comparing rates of AEFI with those occurring without a temporally associated vaccination. The large size of VSD allows for analysis of rare adverse events that
would require a long period of time to detect in sufficient quantity for analysis using traditional surveillance methods.

While VSD does cover a large number of individuals, it may still be difficult to detect very rare adverse events and AEFI potentially related to vaccines recommended for a smaller population (e.g., meningococcal vaccine recommended for adolescents) which would only constitute a subset of the total VSD population. Additionally, VSD sites typically have a very small population of Medicaid patients, which may impact socio-economic diversity in the population under study.

Meningococcal Vaccine Study

Utilizing the methodologies developed for the VSD, other LLDB have been used to address questions that cannot readily be studied using the VSD. An example of this is the analysis of data from five large health plans to study GBS following receipt of meningococcal vaccine by adolescents. This study involved pooling data from approximately 9.5 million adolescents aged 11-18 (approximately 25% of the US adolescent population).

Systems Developed/Adapted to Monitor the H1N1 Influenza Vaccine

Federal plans to monitor the safety of the H1N1 influenza vaccine were described in detail in a report by the Federal ISTF. Throughout the H1N1 influenza pandemic and vaccination campaign, existing systems were enhanced and additional systems were developed, increasing the ability to detect and examine AEFI. While these systems were designed to address the H1N1 influenza vaccination campaign and are not currently in use for routine immunizations, many of their methodologies can be applied to administration of other vaccines. One example is PRISM, which used health plans data in conjunction with state IIS to capture a greater percentage of vaccine receipt than through health plan records alone. The conditions monitored and the sequential analysis methods used in PRISM were based on those developed through VSD. PRISM monitored an estimated 30 million individuals under surveillance for adverse events following H1N1 vaccination, 17 million of whom had enhanced IIS data, resulting in nearly 3 million H1N1 immunizations captured under surveillance.

H1N1 influenza safety studies were implemented for active duty military and veterans, through the DOD and DVA respectively. DOD implemented active surveillance for AEFI among active duty military, through examination of electronic health records, and DVA coordinated data transfer between their Adverse Drug Event Report System (ADERS) and VAERS. RCA was performed utilizing medical records from DOD and DVA electronic data systems. Additional enhanced VAERS reporting and RCA were performed using data obtained through health records maintained by the IHS.

Because of concern about the possibility of an association between H1N1 vaccination and development of GBS, following the experience of the 1976 National Influenza Immunization Program, enhanced surveillance and RCA targeted towards GBS outcomes was undertaken by the CMS. Additionally, the EIP at CDC undertook active GBS case finding with assessment of recent H1N1 influenza vaccination, covering a population of approximately 45 million.

The development of the Real Time Immunization Monitoring System (RTIMS) has presented a unique opportunity for AEFI active surveillance. RTIMS was implemented through the Institute for Vaccine Safety at the Johns Hopkins Bloomberg School of Public Health. RTIMS used web-based queries to identify adverse events at 1 day, 1 week and 6 weeks following immunization, and was used for targeted follow-up for nearly 10,000 H1N1 immunizations, though the information collected was primarily self-
reported, which may impact data quality. Most AEFI identified through RTIMS were reported to VAERS.

An additional, existing surveillance system used to address safety concerns for the H1N1 influenza vaccination program was the Vaccines and Medications in Pregnancy Surveillance System (VAMPSS). VAMPSS is collaboration between the American Academy of Asthma, Allergy and Immunology, the Organization of Teratology Information Specialists and the Pregnancy Health Interview Study at the Slone Epidemiology Center, Boston University (http://www.bu.edu/slone/Research/Studies/VAMPSS/VAMPSS.htm). While VAMPSS was in place prior to the H1N1 influenza pandemic to monitor the safety of medications used by pregnant women, data collection and analyses were targeted to H1N1 vaccine during the vaccination campaign. The VAMPSS sample size was small (approximately 3,000 women), potentially precluding the ability to study very rare outcomes, but the focus on pregnant women allowed some directed examination of maternal and fetal outcomes. Still, there are limitations to the utility of a system such as VAMPSS where the safety data cannot truly be “real-time”, given the need to wait for a full gestation term.

These systems, both those existing prior to the H1N1 influenza pandemic and those developed/modified in response to the pandemic, share one common thread – the need for large amounts of rapidly available, good quality data. While the data from health insurance plans, MCOs, and federal health care data systems can be obtained quickly and in large quantities, all data necessary for epidemiologic studies may not be present. More specific active surveillance programs (e.g., EIP GBS study, VAMPSS) can collect data of high quality, as protocols are rapidly developed, with clearly identified needs, and in some cases, can collect data quickly. Other systems that can be quickly implemented and rapidly monitored may have limitations, such as the use of self-report data (e.g., RTIMS). However, because of the effort to collect these data, and the potential for targeting specific subgroups, sample sizes may be limited either by available participants or by financial constraints given the technical requirements for the data collection and analysis.

The rapid adaptation of existing systems and development of new systems, on an ad hoc basis, is a demonstration of the flexibility of the vaccine safety system to respond to emerging threats.

FDA Sentinel Initiative

Following the passage of the FDA Amendments Act of 2007\(^\text{54}\), the FDA launched its Sentinel Initiative to create an additional mechanism to acquire information on vaccine safety. The Sentinel Initiative is intended to create the Sentinel System, a large surveillance system that will be used for medical product safety evaluations, including devices, drugs and vaccines. Currently, development and refinement of the system is being conducted through the Mini-Sentinel pilot project (http://mini-sentenil.org/about_us)\(^\text{55}\). Mini-Sentinel provides a systematic means to interrogate a distributed network of independent health care databases and is intended to include access to data of at least 100 million patients by July 1, 2012. The Mini-Sentinel Project incorporates, and is expanding on, the vaccine safety-related systems of the PRISM System, described above, to provide infrastructure that will permit evaluation of the full range of adult and pediatric vaccines. The Sentinel Initiative adheres to Federal privacy and security standards, including those endorsed by the Office of the National Coordinator for Health Information Technology (ONC). In addition, representatives of the Sentinel Initiative participate in technology development forums led by the ONC (FDA, personal communication, 2011).

4.2.5.3. Biological mechanisms

Understanding the biological mechanisms behind the human immune response to a vaccine or a confirmed adverse event may lead to (1) improved safety monitoring and assessment by defining which...
populations or sub-populations should be monitored; (2) identification of individuals at increased risk for
experiencing adverse events (genetic risk factors, previous or concurrent illness); (3) better clinical
approaches to treating/ameliorating adverse events that occur; (4) development of improved vaccines that
avoid the biological mechanism in question (as appropriate); and (5) improved risk communication about
the safety of vaccines, particularly with regard to groups identified as higher risk for vaccine adverse
reactions.

Identification of subgroups at increased risk for AEFI is important for three main reasons: 1) the
occurrence of a particular AEFI concentrated in a specific, small subgroup may not be identified when
examining the epidemiology in the general population, 2) identification of these subgroups can help feed
relevant information to other research, such as clinical investigations and the study of biological
mechanisms, and 3) targeting intervention activities (e.g., screening) to these identified high-risk groups.

Now that vaccines are given to individuals across their lifespan, appropriate study populations are needed
in all age groups, as the risk in a 1 year old may be different than the risk in a 25 year old or 65 year old.
Subgroup analysis is difficult because many conditions for which hypotheses have been generated are rare
or poorly characterized themselves. Factoring in the relatively small number of individuals in the
subgroup of interest, and the rarity of serious AEFI, these studies can be challenging to perform.

For example, the 1976-1977 A/Influenza swine influenza vaccine was associated with a 4.0- to 7.6-fold
increased risk of GBS for the six to eight-week period after vaccination. While the IOM concluded that
the evidence favors a causal relationship between this vaccine and GBS, the biological mechanisms for
this adverse reaction have not been elucidated. Because previously identified vaccine adverse reactions
routinely serve as triggers for future vaccine safety monitoring efforts, safety surveillance for the novel
H1N1 vaccine program included a major focus to assess GBS. However, there is the potential that the
efforts for this enhanced monitoring could have been more targeted had there been a better understanding
of the biological mechanisms responsible for the association of the 1976-1977 swine flu vaccine and
GBS.

Clinical Immunization Safety Assessment Network (CISA)

Besides the basic biomedical research described above, targeted clinical research into biological
mechanisms of AEFI is essential. One locus of this work is the Clinical Immunization Safety Assessment
Network (CISA). CISA is comprised of six academic centers funded by CDC and its mission is to
conduct clinical research about adverse events and the role of individual variation, to counsel clinicians
on vaccine safety issues, and to assist policy makers in recommendations for exclusion criteria. CISA
investigates the pathophysiological basis of adverse events, identifies risk factors, and develops evidence-
based guidelines. CISA has made significant contributions in a number of vaccine safety areas, such as
smallpox vaccine effort that followed 9/11, conduct of genomics studies, and evaluation of
hypersensitivity reactions. CISA has the potential to rapidly develop protocols and implement studies
using multi-disciplinary research teams by capitalizing on the diverse expertise available in the academic
centers. These academic centers also have a diverse range of specialty clinics that can be used for
recruitment of patients. CISA and VSD have sponsored a Vaccine Safety Fellowship Program to train
new investigators in this important area of vaccinology, which will encourage further interest and
expertise in evaluating vaccine safety.

CISA also manages a biospecimen repository for samples collected from patients experiencing unusual
AEFI, which holds great promise for studying a variety of vaccine safety questions. Inherent challenges
in specimen collection as well as lack of resources have made the repository of limited utility except for
specific studies that include specimen collection in the protocol. Federal efforts are underway to identify
opportunities for enhancing the biospecimen repository, which are critical to maximize its utility for biological mechanisms research.

Federal Entities Examining Biological Mechanisms

In addition to the basic biomedical research conducted through NIH that has applicability to vaccinology and vaccine safety, there are other Federal research programs addressing the clinical components of vaccine adverse reactions.

The FDA has been active in this arena. One example is the FDA initiative to use VAERS data on cases of post-Lyme Disease vaccination arthritis to facilitate a case-control study of the underlying genetics of this adverse event. More recently, the CBER Office of Biostatistics and Epidemiology established the Genomics Evaluation Team for Safety, to examine the genomics of vaccine adverse reactions.

The Vaccine Healthcare (VHC) Network is a DOD organization that performs clinical consultation, conducts research into vaccine adverse research and develops and disseminates educational materials about clinical vaccine safety concerns. The VHC Network collaborates with other research and healthcare related entities, such as CISA and the Military Vaccine Agency.

4.2.5.4. Causality assessment

Understanding biological mechanisms behind AEFI, sometimes referred to as biologic plausibility, is important in assessing the possible causality between a vaccine and a particular type of adverse event. Previous IOM causality assessments have been hindered by an inadequate understanding of potential biologic effects elicited by immunization. Because 60% of the IOM causality assessments have found “inadequate evidence to make a determination,” further research into this area may lead to more definitive causality assessments.

Causality assessment between vaccination and AEFI is further complicated because there is not always a clear association between a specific vaccine and a specific adverse event. While there are adverse reactions more commonly associated with a particular vaccine (e.g., syncope associated with receipt of HPV vaccine), other, usually non-specific AEFI (e.g., redness/pain at the injection site) may be common across many different vaccines.

Another potential issue is that some adverse events with different clinical presentations may be linked by similar physiologic, pathologic or genetic pathways. Identifying potential biological mechanisms underlying these AEFI involves distinguishing patterns within vaccine-AEFI reports, which requires not only good surveillance for appropriate epidemiologic data but also clear collaborations across disciplines.

4.2.5.5. Injury compensation

Since no vaccines or any other medications can be proven to be 100% safe and some are known to be associated with adverse reactions, serious adverse reactions or vaccine-related injuries could occur in some individuals. While there are societal benefits from vaccination, costs following vaccine adverse reactions are borne by the injured individual or their family. Recognizing that monetary compensation does not fully address the hardship created by vaccine adverse events in all cases, the NCVIA created the National Vaccine Injury Compensation Program (VICP), housed in HRSA. The VICP uses causality assessment information to establish an injury table that allows compensation for persons who develop a condition on the table within a specified time window after vaccination, as documented on the Table, without the requirement of further evidence to establish a causal link between their condition and the vaccine exposure. For injuries that are not listed on the vaccine injury table, which are the majority of
claims currently submitted to the program, either the government and the petitioner come to an agreement or evidence for and against an association between the vaccine and injury must be presented to a special master who makes a decision as to whether to make an award. There is currently a review underway to address more recently recommended vaccines and their potential associated adverse events. Frustration has been expressed over the speed with which data are available to update the VICP injury table.

4.2.5.6. Public health response

When an acute concern arises about the safety of a vaccine, elements of the federal, state and local public health systems may be mobilized to participate in the response. CDC has both proactive and reactive public health response capabilities. The agency develops and disseminates clinical guidelines and recommendations for safe vaccination, provides education to health care providers on safe vaccination practices, and participates in and coordinates public health responses when vaccine safety questions arise. For example, in 1999, when intussusception was suspected to be occurring following vaccination with the first licensed rotavirus vaccine, identified through VAERS reports, CDC mobilized Epidemic Intelligence Service (EIS) officers, and state and local health departments participated in case finding as part of a large multistate case-control study. The findings from these activities led to the halting of the use of this vaccine shortly after identification of the intussusception case cluster in VAERS.

4.2.5.7. Communication

A major component of the public health response is the manner in which information is communicated to the public and to the health care provider community regarding vaccine safety issues. CDC and FDA have been responsible for rapid communication and outreach following identification of potential vaccine safety issues (e.g., rotavirus and intussusception) as well as preemptive efforts to inform the public about the safety of coming vaccines (e.g., 2009 H1N1 vaccine). However, there has not always been coordinated messaging between federal agencies. One example of this is the difference of opinion publicly presented by HHS agencies during the investigation of intussusception following the first licensed rotavirus vaccine. Differing conclusions were made by scientists from different Federal agencies regarding the course of action to take with regard to the use of the first rotavirus vaccine, and the lack of a coordinated message may have led to confusion on the part of the public.

There is much publicly available information on vaccines and vaccine safety, particularly through publicly available websites (e.g., www.cdc.gov, www.fda.gov), as well as through information distributed through the Health Alert Network (http://www2a.cdc.gov/han/index.asp). However, there is not one central location where information on all aspects of vaccine can be accessed, and if individuals are not aware of the differences in scope and role of the various Federal agencies and Departments, it may be difficult to locate the exact information desired. Efforts at coordinated public communication on vaccines more broadly, through websites such as www.flu.gov and www.vaccines.gov, have proven beneficial.

4.2.5.8. Clinical practice to reduce and manage vaccine adverse events and vaccine administration errors

Another area of safety concerns related to vaccination is vaccine administration errors. Common identified administration errors are administration of the wrong vaccine, the wrong dose of the vaccine or administration at an incorrect timeframe relative to the recommended vaccination schedule. One way to address these errors is through the “five rights” framework: Right Vaccine, Right Time, Right Dose, Right Route, and Right Patient. As discussed in Section 1.4.5, patients have started to request more information from physicians than they previously had. The IOM, in their report “To Err is Human”, referenced five questions recommended by the National Patient Safety Partnership for patients to ask to reduce the possibility of medication error. While these are directed more towards prescription
medications, the intent is similar for vaccines. Additionally, there is no central reporting mechanism for tracking vaccine administration errors. If an administration error results in injury (e.g., shoulder injury related to incorrect vaccine administration)\(^{104}\), it should be reported to VAERS but errors for which no injury occurs are not required to be reported to VAERS. Other databases and reporting systems that track vaccine administration errors include MEDMARX\(^{105}\), the Medication Error Reporting Program at the Institute for Safe Medication Practices\(^{106}\), and the FDA MedWatch Program\(^{107}\).

One way to help ensure proper vaccine administration is the use of barcode systems for identifying and tracking the immunizations provided. Currently, the FDA is developing processes and guidance for expanded use of barcode labeling systems\(^{108}\), with the most current guidance, as of August 2010, available at http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/General/UCM225099.pdf.

Once a vaccine adverse reaction is identified in a patient, the clinician must be able to evaluate the severity and have the clinical guidance for managing the vaccine adverse reaction. The CDC’s “Pink Book” contains information on identifying and managing AEFI, with a focus on the more common, and typically less severe, AEFI\(^{109}\). The CDC ISO Scientific Agenda, previously reviewed by the NVAC VSWG, contains a call for the development of evidence-based clinical guidance protocols for managing AEFI\(^{53}\) but there does not currently appear to be a central repository of such clinical guidance.

4.2.6. Feedback mechanisms: From practice to bench

To improve our understanding of the biological mechanisms underlying adverse events, more robust communication and collaboration is needed between basic scientists conducting laboratory research, epidemiologists conducting population-based research, and other partners, such as scientists within the vaccine industry. It is important to recognize the role that manufacturers play in biological mechanisms research. The vaccine industry has a strong incentive to ensure that their products are safe and effective and thus has invested significant resources into determining the biological mechanisms of adverse reactions, not only during the pre-licensure phase, but also post-licensure.

When a significant adverse reaction is observed in epidemiological/surveillance studies, communication with laboratory scientists may help to understand potential underlying mechanisms; similarly, if laboratory research uncovers mechanisms through which a severe adverse event may be triggered, targeted surveillance and epidemiologic studies may be helpful to assess whether there is an actual association of immunization with the event. This two-way communication between epidemiologic and basic biomedical science research is critical to ensuring that all parties involved in studies related to vaccine safety are aware of concurrent research that may impact their own studies. A model for the flow of information and collaboration among these various scientific disciplines is the Clinical and Translational Science Awards (CTSA), now awarded to 46 institutions nationally, with a mission to accelerate technology development from the lab to the clinic. Investigator initiated research is an important mechanism for innovation and enhancing scientific understanding. The general format for this flow and feedback of information is displayed in Figure 2

4.3. Stakeholder and public input

Information obtained from the public comment period and a stakeholder’s meeting on June 13, 2011 will be included in the final report.
5. Discussion/Conclusions

5.1. System framework and general discussion

The current charge of the NVAC VSWG, in the most distilled sense, is to review the current vaccine safety system, identify possible opportunities for improvement within the current system and suggest potential steps to meet those opportunities.

The quest to improve our understanding of vaccines and appropriately balance the benefit/risk comparisons for vaccines, involves – in fact, requires – the efforts of a diverse array of entities and individuals. This includes the biomedical research and healthcare communities; the pharmaceutical industry; federal, state, and local governments; advocacy organizations; and the general public. Because immunization programs are the cornerstone of the national public health enterprise, the federal government necessarily is the focal point for vaccines in general and for managing the vaccine safety system in particular. These myriad groups comprising the United States vaccine safety system has worked in concert to effectively identify and address a variety of safety signals (e.g., intussusception and Rotashield®, GBS and MCV4).

5.2. Conclusions from review of the vaccine safety system

The VSWG finds that the US vaccine safety system is a fundamentally sound system for monitoring vaccine safety that has functioned well since the enactment of the NCVIA. This does not, however, preclude efforts of CQI. Given recent advances in technology and research methodology, it is appropriate to look for and pursue opportunities to make this good system better. Following the information gathering efforts undertaken by the VSWG and corresponding stakeholder and public engagement sessions, the VSWG has come to the following conclusions.

5.2.1. Coordination of the system

In accord with the charge to address “… the infrastructure needs for a federal vaccine safety system …” the VSWG, initially through its Structure and Governance Subgroup and later as a working group of the whole, considered the current infrastructure. The VSWG determined that the National Vaccine Program includes all the requisite functions for a vaccine safety system (i.e., research, regulation, post-licensure surveillance, guidance for immunization programs, guidance for clinicians, injury compensation, and oversight) and that the organizational placements of these functions are consistent with the missions of the respective participating agencies and offices. However, the VSWG believes that, while fundamentally sound, the current vaccine safety system can and should be improved considerably by stronger central leadership, coordination, and ongoing assurance.

The need for improved coordination of components of the vaccine safety system parallels an ongoing NVAC theme of increased coordination within the US vaccine enterprise, as well as being cited in a number of earlier reports. During the working group’s information gathering phase, interviews with representatives from different Federal agencies within the vaccine safety system reflected room for improvement with respect to coordination within the National Vaccine Program, and between its complex mix of governmental and non-governmental partners and stakeholders. There is recent evidence that this type of coordination is possible and can pay dividends for public health. The rapid response of the NVPO in implementing the NVAC recommendations of July 2009 related to H1N1 influenza vaccine safety monitoring provides support for this concept. When the IOM made recommendations related to coordination in their report “Priorities for the National Vaccine Plan”, they cited these H1N1 safety monitoring recommendations as an example of what could be accomplished through these coordinated efforts.
Overall, as seen with the National Vaccine Program in general, there is need for improved coordination among relevant Departments, Agencies and partners on vaccine safety issues. Recommendations stressing coordination in the National Vaccine Plan46,113 highlighted the need for coordination across all components of the vaccine enterprise, including the vaccine safety system. There are some examples of strong coordination, including VAERS, co-administered by the CDC and the FDA114, and bi-weekly conference calls between the leadership of ISO and CBER (FDA and CDC, personal communication, 2011). It is important to identify and build on the best practices of collaboration and coordination that occurred in recent years, primarily in response to public health emergencies (e.g., rotavirus/intussusception and H1N1 influenza), including steps to ensure the most efficient use of resources in basic, clinical and surveillance research, as well as communications to external stakeholders and the public. Additionally, agencies with a role in immunizations, such as IHS, AHRQ and VA should have adequate representation through NVP-related task forces, advisory committees and working groups.

The need for coordination extends to the research realm. Basic research, clinical research, and epidemiological research must all be well-coordinated and inform one another, a feedback loop which is currently underdeveloped. Without formal linkages between vaccine-related entities (such as the National Institute of Allergy and Infectious Disease [NIAID], VTEU, CDC, CISA, and FDA) complimentary expertise and infrastructure cannot be fully leveraged. A mechanism is needed for collaborating with experts outside of the vaccine safety arena when questions arise that would benefit from neurologists, mitochondrial experts, etc. Not only would these linkages aid in understanding the potential adverse events, subspecialists may be sources of cases for study or samples for a vaccine safety repository.

While the CDC ISO has a 5-year research agenda51 in place, on which the NVAC previously made recommendations62, this represents only one component of vaccine safety research. While activities are currently underway in other agencies64,97, they do not represent a consistent enterprise-wide vaccine safety plan. Development and implementation of such a plan would require a coordinated effort to ensure that the goals of the plan are being met. Such reviews were envisioned by IOM in the report “Vaccine Safety Research, Data Access, and Public Trust”, where the NVAC was called on to annually review and provide advice on the research plan for the VSD115.

Improved coordination is important to ensure that appropriate data related to vaccination and adverse events are collected when opportunities to do so present themselves. Long-term, longitudinal studies, such as the National Children’s Study provide the opportunity for analysis of large cohorts of children, and efforts need to be leveraged to ensure that accurate immunization data are collected. While these studies are not designed solely to address effects, both beneficial and adverse, of vaccination, they do provide an opportunity to improve data retrieval methods (e.g., through medical records or through immunization information system review).

Acting as the operational arm of the National Vaccine Program, the NVPO is charged with coordinating activities across the Federal government to implement the goals of the National Vaccine Plan116. However, the Director of the National Vaccine Program, the ASH, does not have organizational authority over the agencies that comprise the National Vaccine Program, and is therefore hampered in his/her ability to directly enact change or coordinate activities within these agencies. Instead, this authority resides with the Secretary of HHS and Secretaries of non-HHS Departments involved in vaccination and vaccine safety. It is critical to increase awareness of the functions and activities of the vaccine safety system among these Secretaries, and to increase their role in meeting their respective charges relative to vaccine safety. The coordinating entity for the vaccine safety system therefore needs a clear mandate to perform these coordinating functions. With improved coordination, there is also a greater ability to be flexible with a given program to adapt to an emergent need such as those adapted to assess “real-time” risk during the H1N1 epidemic.
Outside of the Federal government structure, public advisory committees make recommendations to appropriate agencies. For example, the legislation that established the NVAC listed eight other National Vaccine Program responsibilities, in addition to vaccine safety, that the NVAC was to provide advice on. Given this broad scope, and a limited membership size, with some membership categories prescribed by the NVAC charter, there is a potential limit to the amount of vaccine safety expertise within the full committee. This need has been addressed by subcommittees and working groups that can enlist non-NVAC members, as needed. Depending on the task at hand, these groups can be task-oriented with specific timelines for completion, possibly precluding long-term evaluation.

Vaccine safety activities and vaccine science require financial resources and staff support. Substantial investments will be needed to improve the ability to engage in causality assessment and to improve scientific understanding of mechanisms and individual risk. Staffing dedicated to vaccine safety activities is not commensurate with the responsibilities and workload necessary to fulfill their obligations.

Funding within the Federal infrastructure for post-licensure vaccine safety has not increased significantly since 2004, despite the addition of four vaccines to the routinely recommended immunization schedule. In general, funding for vaccine safety system partners has remained flat over many years, while the number of vaccines and the number of people vaccinated has increased substantially, though there have been some targeted increases, such as the funding dedicated to development of the Mini-Sentinel program. Because many activities that impact vaccine safety, either directly or indirectly occur without the specific moniker of “vaccine safety”, it is difficult to identify what proportion of agencies’ and Departments’ funding is allocated to vaccine safety-related functions.

The NVAC previously highlighted the need for additional funding for vaccine safety research, with focus on the CDC ISO, as well as general recommendations addressing the need for additional funding for vaccine safety activities in 1996, 1997, 1998 and 1999. The IOM also recommended funding increases as part of its review of the National Vaccine Plan. Additionally, the increased infrastructure capacity to address the H1N1 influenza pandemic was developed using temporary funding allocations, and there was no clear plan to maintain these improvements. In February, 2010, NVAC resolved that important improvements made in public health infrastructure (including but not limited to vaccine safety) should be maintained. Specifically, NVAC recognized the need to continue funding infrastructure improvements that were put in place to deal with the pandemic.

Thus, the VSWG provides the following conclusions in the area of Coordination:

- Enhanced collaboration on vaccine-safety initiatives between agencies is needed.
- Leadership within the Office of the Secretary, HHS to exercise its inherent authorities to improve coordination among US government agencies and offices needs to be increased.
- An enterprise-wide agenda for enhancing research in critical subject matters, including both pre-licensure research activities and post-licensure surveillance, needs to be created.
- Public advisory committees and their related subcommittees/working groups would benefit from enhanced expert representation to address vaccine safety issues by inclusion of subject matter experts in areas such as understanding, preventing, and treating vaccine-associated adverse events.
- Resources, including fiscal support and staffing, provided to vaccine safety activities should be increased at levels commensurate with the needs and opportunities that exist.
5.2.2. Basic biomedical research

The human immune system is incredibly complex. Many investigators are working to understand the physiologic responses of the immune system and how they change over a person’s lifetime. The knowledge base related to the biological basis of vaccine adverse reactions exhibits substantial gaps and uncertainties and critical opportunities to address them are receiving insufficient attention and funding. There are several ongoing efforts to examine biological mechanisms behind the immune response to vaccination in particular. Such research may also be helpful to better understand and possibly treat or prevent vaccine adverse reactions. However, these efforts for the most part remain insular and not well coordinated with each other. In discussions with scientists, it was determined that no inventory of basic research possibly related to vaccine response and adverse reactions has been formed or maintained. There is no current effort to do this. Important opportunities to link basic research to vaccinology and the study of vaccine adverse reactions are being missed.

Basic research into the molecular and cellular responses making up the immune response to vaccination that may be related to adverse events, including studies of vaccine antigens, adjuvants and other related components, needs to be improved and incentivized, as was done with the use of American Recovery and Reinvestment Act funds to begin a study to model the human immune response. NIH activities could also be integrated into existing FDA/CDC studies of vaccine safety to enhance the inclusion of information from basic research. It may be beneficial to develop systematic methods to prioritize which vaccine adverse reactions should be studied or to consider incorporation of public input into the prioritization process.

There are other entities with great potential to contribute to the scientific base of biological mechanisms but they need to be more actively involved and committed to the vaccine safety research program. NIH has given much attention to immunology research through programs like the Human Immune Phenotyping Research Centers and targeted programs. Genomics research has also increased exponentially, and genome-wide scans have the ability to identify rare variants associated with diseases or conditions. Much of the focus on genomics has stemmed from the notion that biological responses are affected by genetics, and different drugs may be more or less appropriate for different individuals. The concept of personalized medicine is now widespread. In light of the interest and investment being made in these respective scientific disciplines, there is great opportunity to collaborate and inform vaccine safety science through the lenses of immunology and genomics. This will require collaboration among scientists and entities conducting research, funding, and access to specimens through an effective biobank able to capture the necessary samples from patients who experience very rare events. Formalized data sharing will inform a coordinated scientific agenda that includes biological mechanisms, which is critical to ensure that the biological basis behind vaccine adverse events is properly understood. Research cannot be undertaken without a strong vaccine safety science work force, which is currently small and inadequately supported.

While a substantial amount of basic research with applicability to vaccinology is occurring through NIH support, linkages between these individual research activities, and a broader connection to vaccinology is lacking. Increasing the awareness of the potential interoperability of these research activities within the scope of vaccine safety science is essential to ensure that an appropriately broad array of vaccine-related research is moving towards a common end point. While the VSWG identified lack of a vaccine safety study section at NIH as a gap, there may be other processes that can be refined to meet the goal of improved coordination of vaccine safety related activities. An emphasis on the multi-disciplinary approach to addressing vaccine safety questions, including the development of linkages across funding opportunities is needed. Possible solutions include highlighting the use of particular keywords, such as “vaccine safety”, and requests for targeted review by vaccine safety experts, to ensure that the interdisciplinary benefits of the study are made known. The existing program announcement for vaccine...
safety-related research64 is one step in attracting the desired high-quality, multidisciplinary investigators to this field, but it is critical that there be a mechanism within NIH to track research with applicability to vaccine safety, and work to foster these linkages.

A consistent funding mechanism for vaccine safety research should be identified, which could support program project grants and investigator-initiated research into vaccine safety under the scope of a national vaccine safety scientific agenda. The development of this scientific agenda, and coordinated research program could also help the development of a National Vaccine Safety Biospecimen Repository. Currently, an IRB-approved specimen repository is maintained through CISA. Expansion into a larger-scale repository could increase the ability to perform necessary biological mechanisms research, but may magnify the logistical issues of maintaining such a repository.

Thus, the VSWG provides the following conclusion in the area of Basic Biomedical Research:

Research into the molecular and cellular mechanisms that may be involved in vaccine-associated adverse events is not always linked to the concept of vaccine safety. Coordinating such research efforts and more clearly identifying their possible application to vaccine safety would possibly enhance prevention and treatment of vaccine adverse events.

Development of a National Vaccine Safety Biospecimen Repository has a number of logistical challenges that need to be addressed, including but not limited to: 1) identification of what types of samples would be banked, 2) what associated information would be needed for the samples to be useful, 3) who would contribute samples to the repository, 4) how would the samples be distributed, 5) who would determine which requests for samples would be approved, 6) who would maintain the samples, 7) who would ship the samples, and 8) how would the repository be funded.

\textbf{5.2.3. Vaccine development/pre-licensure activities/clinical trials}

Sample size limitations for clinical trials can affect the ability to clearly identify associations between vaccination and adverse events during vaccine development and testing. While it is impractical to attempt to increase clinical trial size to match post-licensure vaccine uptake, increased knowledge regarding biological mechanisms of vaccine adverse reactions and comparisons with known vaccine-adverse event associations can help clarify specific targets for pre-licensure vaccine safety studies. An example was the increased clinical trial size for rotavirus vaccine trials to identify associations with intussusception following the experience with the first licensed rotavirus vaccine15. This type of coordinated feedback and continuous evaluation between manufacturers, biomedical researchers and the government is a critical component of vaccine development and pre-licensure activities, and needs to be fostered. One key area of for vaccine development and pre-licensure activities is animal and toxicology studies conducted prior to beginning clinical trials.

Thus, the VSWG provides the following conclusion in the area of Vaccine Development/Pre-Licensure Activities/Clinical Trials:

Vaccine clinical trials have improved, in particular with larger sample sizes to detect rarer AEFI. Ongoing clinical trials offer an opportunity for continuous evaluation and improvement to identify best methods for vaccine safety outcome measures.
5.2.4. Vaccine licensure

Vaccine licensing activities were outside of the scope of this working group, and the VSWG makes no conclusions on this topic, as these considerations are under the purview of the Vaccines and Related Biological Products Advisory Committee.

5.2.5. Post-licensure activities

5.2.5.1. Surveillance/signal detection

Because of the lack of sufficient power to detect many rare outcomes that can be temporally associated with immunization (which are needed to evaluate data acquired during the course of immunization), the significance of small increases in risk is difficult to evaluate with confidence. Efforts to estimate background rates of AEFI that may be temporally associated with pandemic influenza vaccination during preparations for the H1N1 influenza vaccination campaign was a key step in increasing this knowledge base.

The utility of VAERS was well demonstrated following the initial post-licensure period for the first licensed rotavirus vaccine. However, the limitations of a passive reporting system, along with reports containing incomplete data, can affect the strengths of the system, and new technologies should be employed as possible to address these limitations. Additionally, some reports published using VAERS data included analytic interpretations beyond what is recognized as feasible with these data, which can lead to misunderstandings of the value and application of this system.

Expanded technologic approaches to surveillance of early concerns and “warning signs” among the public have not been widely utilized. While focus groups and town meetings are important for getting more in-depth sense of public concerns and responses to messages, they do not provide a sense of the distribution of the concerns in the general population.

Thus, the VSWG provides the following conclusions in the area of Surveillance/Signal Detection:

- Calculation of background rates of potential AEFI in subpopulations is important for proper vaccine safety risk assessment.
- The uses and limitations of VAERS may not be widely understood by its target population (e.g., physicians, parents), and its uses and limitations are not widely understood by the general population.
- Strategies are needed to enhance the quality of data reported to VAERS. Some potential examples are outreach to individuals who make reports encouraging more complete data reporting and utilization of technology and data abstraction methods from electronic health records to enhance reporting.
- For an increasingly proactive way to measure AEFI, the vaccine safety enterprise needs an expanded array of surveillance approaches to ascertain early concerns through public opinion polling and active monitoring the “new media” such as blogs, etc.

5.2.5.2. Signal assessment/hypothesis testing

Post-licensure data collection for vaccine safety is required through Title 21, Code of Federal Regulations, Part 600.80, “Post marketing reporting of adverse experiences” and existing FDA
guidance to industry on vaccine safety reporting130. However, the extent of post-licensure vaccine safety monitoring may not be readily apparent to the public, potentially leading to concerns about the adequacy of this type of evaluation.

Post-licensure studies of vaccine safety can require extensive time and effort, and there may be the perception of a trade-off between timeliness and quality of the results. However, as seen with the NVAC H1N1 VSRAWG131, high quality and rapid evaluation of vaccine safety data can be performed, though the intensive effort required may not be sustainable for all, or even most, vaccine safety examinations. Ad hoc development of systems such as the Meningococcal Vaccine Study18 and PRISM23 to supplement the VSD can be effective for defined and targeted analyses, though an evaluation for more widespread application still needs to be performed. Increased sample sizes and increased technological advances (e.g., RCA) can increase the timeliness for detection of significant levels of adverse events93,132.

A major opportunity to increase sample sizes for study of AEFI comes from the FDA Amendments Act of 200754, which calls for increasing the size of the population under active surveillance for post-licensure examination of adverse events. At this time, the FDA is developing the Sentinel Initiative, a large surveillance system for medical products (including medical devices, drugs and vaccines) safety studies. It is anticipated that by July 1, 2012, the population under surveillance will reach 100 million. The Sentinel Initiative relies on advanced informatics capabilities to efficiently and accurately access information in billing information and electronic health records.

The transition from signal detection to signal evaluation is a mix of art and science. In order to ensure the best data are available for signal detection, efforts should be improved to educate medical professionals and parents to identify vaccine adverse events and to accurately and completely report them (as discussed above) to ensure adequate data to perform hypothesis testing.

Thus, the VSWG provides the following conclusions in the area of Signal Assessment/Hypothesis Testing:

Programs for post-licensure surveillance and hypothesis testing for AEFI should be enhanced regarding the quality and timeliness of reports and scope of coverage, while balancing the resources required for such efforts with the potential benefits. New data analysis technologies could assist in improving the timeliness of these findings.

Even well-developed epidemiological studies of actual or potential vaccine-associated adverse events would benefit from increased sample sizes to be able to more quickly detect rare adverse events.

5.2.5.3. Biological mechanisms

While proactive monitoring efforts are used to identify rarer AEFI with more widespread vaccine use, the current system for research into biological mechanisms of vaccine adverse reactions is, by its inherent nature, primarily reactive. While basic research projects such as the NIH’s Human Phenotyping Project provide a great opportunity to build and sustain a consortium approach for profiling human immune responses, little has been done to capture potential synergies between these efforts with others such as the development of a biospecimen repository. Indeed, more thought and leadership is needed on approaches to incentivize novel research that will provide critical information to guide vaccine safety policy decisions across all aspects of the life cycle of a vaccine.

Many opportunities exist to gain new fundamental insights into the molecular and cellular mechanisms that may be involved in vaccine adverse reactions that could improve prevention and treatment of vaccine
adverse events. Although the purpose of this report is not to prescribe specific vaccine safety activities, the VSWG would like to reaffirm that NVAC made recommendations related to biological mechanisms in its June 2009 report\(^\text{12}\), including “Consider detailed mechanistic studies of common but mild adverse events such as fever or rash. These might provide insights into mechanisms of severe but rare adverse events”\(^\text{62}\). This prior NVAC recommendation was made to attempt to understand if there are common mechanisms underlying adverse events that are common and mild as well as more severe adverse events. Attempts to understand underlying mechanistic issues for adverse events may allow examination of severe adverse events through the proxy of other, more common, adverse events.

Efforts to study biological mechanisms of vaccine adverse effects are substantially under-resourced and could contribute more to this effort with additional funding and research staff. The need for solid research to understand biological mechanisms and inform clinical guidance to medical providers is clear, but the resources needed to adequately support these efforts are lacking. As an example, CISA faces challenges in recruiting sufficient subjects for many of their protocols due to limited funding and the difficulties inherent in studying very rare outcomes.

Thus, the VSWG provides the following conclusion in the area of Biological Mechanisms:

> Research into the molecular and cellular mechanisms that may be involved in vaccine-associated adverse events is occurring but could benefit from increased coordination, planning and resources.

5.2.5.4. Causality assessment

The lack of coordination around vaccine safety research described above has left open many opportunities to improve knowledge and understanding of vaccine safety. In 18 of 30 (60%) assessments since 2001, the IOM concluded there was not adequate information to accept or reject a causal association between vaccination and specific adverse events\(^\text{50}\). Part of the problem with vaccine adverse event causality assessments is the lack of statistical power associated with smaller studies. The use of large linked databases has begun to reduce this problem but even in the VSD, the population under active surveillance may still be too small for examination of very rare adverse events (e.g., 1-2 cases / 100,000 for GBS) or events among important subgroups such as pregnant women.

Thus, the VSWG provides the following conclusions in the area of Causality Assessment:

> Causality assessment, as performed by the IOM, is a useful and robust process. There is a need for institutionalizing a standing causality assessment group.

> Acute investigations (e.g., association between first licensed rotavirus vaccine and intussusception) have worked, but the broader responsibilities of Federal Departments and agencies involved in causality assessments may benefit from improved coordination to maximize available data and expertise.

5.2.5.5. Injury compensation

The current Vaccine Injury Table became effective November 10, 2008. However, four vaccines (hepatitis A vaccine, trivalent influenza vaccine, meningococcal [polysaccharide and conjugate] vaccines and HPV vaccine) have not undergone full review of adverse events that may be considered for compensation under the VICP\(^\text{100}\). An IOM review is underway for these, and other, vaccines\(^\text{133}\). However, until this review is completed and new entries are made to the Vaccine Injury Table, adverse events following receipt of these vaccines must be proven to be associated with vaccination in order for
compensation to be provided. Often claims alleging conditions not listed in the Vaccine Injury Table are
compensated on the basis of negotiated settlements between both parties. Since FY 2007, over half of
claims adjudicated annually are compensated on the basis of litigative risk settlements.

While provision of information about VAERS and the VICP to patients is mandated for administration of
all vaccines, the extent to which this information may be underutilized by individuals who experience an
adverse reaction is unknown. One recent study observing physician-patient interactions did not find any
instances of providers specifically referencing the VICP during vaccination visits, though VIS were
routinely provided. Preliminary results of an assessment of provider and public awareness of the VICP
presented to the ACCV indicated a lack of awareness of the existence, functions and role of the VICP.
As indicated in the Communications section, improvements in coordinated distribution of vaccine safety
information may help provide clarity regarding both VAERS and the VICP.

Thus, the VSWG provides the following conclusions in the area of Injury Compensation:

- The timeframe for updating the vaccine injury compensation table could be improved
 commensurate to the pertinent and existing knowledge base.
- Provider and public awareness of the VICP Program could be increased.

5.2.5.6. Public health response

In recent years, public health officials have undertaken targeted active surveillance to understand and
quantify outbreaks of unexpected medical problems that occurred in the wake of vaccination. CDC is the
lead agency for public health responses when vaccine safety questions arise, in the same manner as for
other acute public health emergencies (e.g., outbreaks). For example, in 1999 when cases of
intussusception following rotavirus vaccine were reported to VAERS, CDC initiated a multi-state
investigation of intussusception following vaccination. Early case finding results, preliminary results of
the manufacturer’s post-licensure studies and reports to VAERS led to CDC suspending the rotavirus
immunization program within 2 months of identifying the cluster of cases reported to VAERS.

By definition, public health response activities are primarily reactive. While CDC has an impressive
track record of providing support through the Epi-AID system for disease investigation and control, there
may be room for coordination of public health response activities across Departments and agencies
involved in the vaccine safety system. Additionally, aside from high-profile situations, such as the
rotavirus vaccine/intussusception case and the H1N1 influenza vaccination campaign, there does not
appear to be broad communication to the public about the public health functions involved in vaccine
safety.

Proactive efforts to assure appropriate public health response were evident throughout the planning that
occurred in summer 2009 for the H1N1 influenza vaccine campaign. While activities such as PRISM
sought to establish links for immunization data across multiple sources, including health plan data and
immunization information systems, there were still challenges in obtaining H1N1 immunization data for
individuals vaccinated outside of traditional immunization settings, to link to health outcomes data.

Thus, the VSWG provides the following conclusion in the area of Public Health Response:

- Recognizing the work of CDC in vaccine safety-related public health response, best practices and
 collaborative efforts should be promulgated among Federal Departments and agencies that may
 be involved in these types of public health response activities.
Future public health response would benefit from increased data linkages between sources of immunization data, both from traditional and non-traditional immunization settings, and sources of health outcomes data.

5.2.5.7. Communications

Information about vaccine safety is primarily disseminated by the CDC135, through news releases, press conferences and website postings. However, vaccine safety information is also distributed by other HHS agencies such as NIH and FDA136 and other Departments (e.g., Defense137,138), and is often related to more specific topics. The establishment and authorization of a central body within the federal government to coordinate and distribute vaccine safety information would improve communications on vaccine safety.

CDC is the primary Federal government point of contact for receiving and providing information related to vaccine safety, through development of clinical guidelines and recommendations for safe vaccination, provider education on safe vaccination practices, fielding public requests for information and performing studies related to public concerns about vaccine safety as well as funding similar external studies. However, there may be opportunities for other Federal agencies to participate to improve the effort, particularly for very focused topic areas (e.g., Vaccine Injury Compensation Program through HRSA).

Thus, the VSWG provides the following conclusion in the area of Communications:

The provision of a one-stop source of comprehensive information about vaccine safety, for the public and providers, such as how to report adverse events, how the vaccine safety system has successfully identified previous actual adverse events following immunizations, how the vaccine injury compensation program works, what safety-related research is underway, etc. will improve communications to the public on this issue.

There is room for improved coordination between the different US government Departments and agencies (e.g., CDC, FDA, DOD, DVA) with respect to their outreach about the safety of vaccines.

5.2.5.8. Clinical practice

Comprehensive education, particularly for immunization providers, is very important, not only for adverse event identification but also for proper vaccine administration and treatment of adverse events. This will require research and development of treatment algorithms. The DOD VHC has developed related algorithms, more of which are needed for vaccines given in the general population.

For healthcare providers, as well as individuals who believe that they have experienced a vaccine injury, clinical guidance for managing and coping with vaccine injuries is limited. Even within “Epidemiology and Prevention of Vaccine Preventable Diseases” (aka, “The Pink Book”)109 there is limited information on clinical guidance for managing adverse events following immunization.

Thus, the VSWG provides the following conclusions in the area of Clinical Practice:

Clinical guidance and other support related to identification, evaluation, treatment, management and coping with AEFI should be improved and widely disseminated to vaccination providers, patients and caregivers.
FDA initiatives on barcoding should be widely adopted, to help surveillance systems capture data more consistently.

5.2.6. Feedback mechanisms

The findings related to feedback of vaccine safety science and vaccinology described above can primarily be addressed through better coordination of the system. The conclusions presented in Section 5.2.1 are applicable to this area as well.

5.3. Goals of an ideal vaccine safety system

The VSWG concluded that the US vaccine safety system should be able to:

- accurately detect AEFI with high sensitivity and specificity,
- accurately quantify the risk of AEFI to allow benefit/risk comparisons,
- assess whether an AEFI is causally linked to vaccination,
- conduct an appropriate public health response to emerging vaccine safety issues,
- appropriately communicate results between the scientific community and the public,
- ensure that system processes and results are transparent,
- better understand AEFI to develop proactive research into AEFI occurrence and prevention, and
- perform these tasks in a timely manner.

The ideal vaccine safety system should consist not only of a responsive arm but also a long-range, proactive research arm.

During its discussion and deliberations, the VSWG identified nine essential functions of a vaccine safety system. The identified functions are the essential components of the vaccine safety system. They are presented in Appendix 8. It is important to note that the order of the functions does not indicate priority nor does the number of associated items indicate scope.

Additionally, the VSWG noted ten attributes by which the functions identified could be best performed. The essential attributes of the vaccine safety system functions are presented in Appendix 9. Key attributes are defined as qualities or characteristics the VSWG hopes to maximize for each essential system function. Each of these key attributes is important for all functions of the vaccine safety system, and each was considered on a continuum. Although the VSWG agrees that all attributes should be maximized in each function, participants of the Salt Lake City small stakeholder meeting identified three attributes they felt should be prioritized: evidence-based decision making, objectivity, and transparency.

5.4. Public confidence

In response to its charge, the VSWG considered whether public confidence in vaccine safety during recent years may impact vaccination coverage and whether the recommended improvements in the safety system could improve public confidence, resulting in higher vaccine coverage. Current coverage levels for many routinely recommended childhood vaccines are at historically high levels in the whole population, raising the question about whether vaccine safety concerns expressed by parents in some surveys have led to changes in parental vaccine decision-making. However, with the availability of alternative vaccination schedules, some parents may be delaying vaccination or requesting that their children have immunizations spread out more than called for in the recommended schedule. Also recent outbreaks of measles, as well as data on vaccination coverage at the school level, have highlighted pockets of under-immunization in subgroups concerned about vaccine safety. These pockets have adversely affected the health of the larger population by providing an opportunity for introduced diseases.
to take hold in under-immunized populations. In addition, it is possible that safety concerns may impede
the uptake of more recently recommended vaccines or will do so in the future.

A consistent theme in research about attitudes toward vaccination is that patients consider their physician
the most trusted source of information about vaccine safety. Physicians then need to better
understand both the safety of vaccines and the vaccine safety system. They must have confidence in the
scientific basis for that understanding and efforts need to be undertaken to assess this understanding and
related perceptions. Moreover, they must have adequate methods to communicate with their patients,
whether through more face-to-face time or other education tools. This is a difficult goal given the
economic pressures in primary care.

A nationally representative survey conducted in early 2009 among parents of children aged up to 17 years
found over half of all individuals surveyed had concerns about serious adverse effects of vaccines.8
Another study in 2009 sponsored by the Association of State and Territorial Health Officials (ASTHO)
found that the most common reason for delaying vaccination was concern about too many vaccines given
at once. Nearly a third of those sampled found the statements convincing that vaccines are unsafe
because of ingredients such as thimerosal or aluminum and that too many vaccines given too soon can be
harmful. Some of those who chose to vaccinate their children and expressed minor concerns or no
concerns at all nevertheless expressed concern over ingredients and the number of vaccines.26 This may
be driven by a lack of awareness of the activities of the nation’s vaccine safety system by the average
American. Most available data focuses on public perceptions about the safety of vaccines and not
perception of the vaccine safety system. However, the ASTHO study suggests parents are also concerned
about the vaccine safety system itself, at least as manifest by government guidance for immunization
practice. Nearly a quarter of those surveyed found convincing statements that data supporting vaccine
safety were unreliable due to bias by pharmaceutical companies and government cover-up.26

During the 2009 H1N1 influenza pandemic, among 2,994 pregnant women who did not receive the
seasonal influenza vaccination, 48% cited safety concerns for their baby and 45% cited safety concerns
for themselves. Among the 2,602 who did not receive the 2009 H1N1 vaccination, 64% cited safety
concerns for their baby and 61% cited safety concerns for themselves. Since the bulk of the H1N1
vaccine became available after the fall 2009 wave of H1N1 disease, when public demand may have
lessened, it is difficult to determine the impact of these safety concerns on the ultimate H1N1 vaccination
coverage: median coverage was 41% for children aged 6 months to 17 years, 38% for adults aged 18 to 49
years with high risk conditions, 29% for adults 18 to 49 years without high risk conditions, 46% for adults
aged 50 to 64 and 69% for adults aged 65 years and older.27

The VSWG could not determine if improvements in the vaccine safety system will change public
attitudes in general. In particular, the VSWG found no data suggesting that, for individuals in specific
populations who oppose vaccination for their children, improvements in the vaccine safety system will
modify attitudes. The general public is likely largely unaware of the vaccine safety system and its
function in ensuring vaccine safety, and it is not clear that knowledge of the system would change these
attitudes or behavior. On the other hand, increasing awareness of, and improving appreciation of
enhancements to the vaccine safety system by practicing physicians may increase their ability to rapidly
communicate vaccine safety information to parents. This is of particular importance with the large
amount of information to be communicated, both vaccine-related and not vaccine-related, during routine
physician visits where time may be limited. However, regardless of whether a continuous improvement
process in the vaccine safety system will improve public confidence, resulting in increased acceptance of
vaccines, these improvement processes must be considered if they will strengthen the system and improve
scientific understanding and patient safety.
6. Recommendations

The draft recommendations presented here were developed by the National Vaccine Advisory Committee (NVAC) Vaccine Safety Working Group (VSWG). The draft being circulated is a synthesis of the information that the VSWG has obtained since July 2009 for purposes of discussion and comment. No decisions have been made by the VSWG regarding the final outcome of these recommendations or their components. The VSWG will consider all comments made on this draft as they prepare the penultimate draft of the report for discussion and deliberation by the NVAC.

These recommendations, when finalized by the VSWG, will be deliberated on by the NVAC. The NVAC serves in an advisory role to the Assistant Secretary for Health (ASH), within the United States Department of Health and Human Services (HHS). If approved by the NVAC, they will be formally transmitted to the Assistant Secretary for Health for his consideration and possible implementation, which may include communication with various components of the Department and other interested parties.

For some of the recommendations below, the VSWG went beyond simply stating the objective to include details regarding either how the objective should be achieved or what the completed objective should include. The VSWG chose this approach for three reasons. First, the VSWG seeks to avoid ambiguity regarding its thinking; absent the associated details, a reader could reasonably interpret the recommendation substantially differently than does the VSWG. Second, the RAND Corporation, in a recent study commissioned by the NVPO, found many previous NVAC recommendations to be lacking sufficient details to guide implementation and called for future NVAC recommendation to be “actionable”. Therefore, the VSWG sought to make its intended actions clear. Third, recognizing that HHS may wish to consider alternative approaches to implementing the recommendations below, the VSWG believes that the details it offers will provide a valuable benchmark against which to compare any given alternative approach and determine whether it is more or less superior to that recommended here.

The VSWG is mindful that, per its charge, its recommendations need not be constrained by the budgets for the NVP-coordinated agencies and Departments - either current funding levels or projected ones. Nevertheless, in formulating these recommendations, the VSWG was aware of potential budget implications, recognizing that they would have a long-term impact on the vaccine safety system, and not be solely constrained by the current fiscal environment. The VSWG recognizes that some recommendations can be accommodated readily within current operating levels; that other recommendations will require modest increments beyond current spending; and that still other recommendations will require commitment of substantial additional funds. In general, the budget implications of each recommendation are self-evident from the description and associated discussion.

Recommendation 9 in this document calls for a costing of all recommendations accepted by the NVAC. The VSWG understands that vaccine safety is but one of many worthy claimants for funding as the Executive Branch and the Congress weigh difficult choices throughout the annual budget process. The VSWG also understands that the flexibility inherent in this process is considerable. In particular, the discretionary budget for the Department of Health and Human Services (HHS) for Fiscal Year 2010 (October 01, 2009 to September 30, 2010) was almost $79 billion; and the corresponding item in the President’s Budget Request for Fiscal Year 2011 is over $81 billion. Reprioritization of a small portion of the annual HHS discretionary budget toward enhancing the vaccine safety infrastructure over the next few years seems realistic.
Recommendation 1 – Leadership

To ensure adequate leadership for vaccine safety-related issues, the VSWG recommends that HHS clearly delineate and update the structural organization, constituted as the National Vaccine Program (NVP), which is responsible for coordinating federal government activities related to vaccine safety.

Recommendation 1.1 – Reaffirmation of the System Structure

The Secretary, HHS, should affirm the commitment of the Department of HHS to fulfilling the letter and spirit of the vaccine safety provisions of the National Childhood Vaccine Injury Act of 1986 by issuing a policy statement that includes the following components:

- Reaffirmation that the NVP is a coordinated effort among the Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), the National Institutes of Health (NIH), the Health Resources and Services Administration (HRSA), and the Centers for Medicare and Medicaid Services (CMS) and the Departments of Defense (DOD) and Veterans Affairs (DVA) and the United States Agency for International Development (USAID);
- Reaffirmation that the Assistant Secretary for Health (ASH), having been designated as Director, NVP is responsible for the direction of the NVP activities related to coordination of vaccine safety;
- Reaffirmation that the National Vaccine Program Office (NVPO) is charged with advising the ASH regarding implementation of the responsibilities of the NVP and coordinating the vaccine safety-focused activities of the NVP\(^1\) (see related recommendations in Recommendation 2);
- Reaffirmation that the National Vaccine Advisory Committee (NVAC) is responsible for reviewing vaccine safety policy and the vaccine safety-focused activities; developing recommendations based on these reviews; and transmitting its recommendations to the ASH, and to the Secretary pending implementation of Recommendation 1.3;

Recommendation 1.2 – Structural Organizational Changes in the National Vaccine Program

- Inclusion of the Indian Health Service and the Agency for Healthcare Research and Quality as participants in the NVP.
- Direction to HHS agencies coordinated under the NVP, accompanied by a request to DOD, DVA, and USAID, for the following:
 - to cooperate fully with NVPO vaccine-safety coordination efforts,
 - to identify and pursue opportunities for collaborative projects relevant to NVP vaccine safety objectives with other NVP coordinated agencies,
 - to ensure that they regularly obtain the advice of appropriate subject matter experts and consumers to guide initiatives related to vaccine safety, and
 - to ensure that other governmental agencies, vaccine manufacturers, and appropriate stakeholder organizations and representatives of the public regularly have the opportunity to provide feedback during the planning and implementation of initiatives related to vaccine safety and are apprised of initiatives and outcomes related to vaccine safety.
 - to define performance expectations related to vaccine safety for the NVP-coordinated agencies.

\(^1\) Note that this includes NVPO being the central coordinating office of the Immunization Safety Task Force, an entity that did not exist in 1986 at the time the NCVIA was written.
Recommendation 1.3 – National Vaccine Advisory Committee Charter

The Charter of the National Vaccine Advisory Committee should be modified to reflect the following changes:

- Specify that NVAC advises the Secretary as well as the ASH, thereby defining a relationship between NVAC and the Secretary akin to that which already exists for the Advisory Committee on Immunization Practices and other major HHS public advisory committees;
- Specify additional Federal *ex officio* representation from the Indian Health Service and the Agency for Healthcare Research and Quality.

Both in response to requests from the Secretary and at its own initiative, the NVAC should evaluate the progress of the NVP-coordinated agencies toward enhancing vaccine safety, especially through NVP-wide initiatives to enhance research, post-licensure surveillance, public information, and stakeholder engagement. To accomplish this, the Assistant Secretary for Health should charge the NVAC to create a standing Working Group on Vaccine Safety. Members of this Working Group should be selected using a similar approach as used for the H1N1 Vaccine Safety Risk Assessment Working Group.

This Working Group would, at a minimum, be charged with reviewing the following long-term goals and activities:

- implementation of these and other related NVAC safety recommendations through regular reports from the ISTF, as described in Recommendation 8.2;
- agencies’ vaccine safety plans and progress in implementing them;
- response to emerging vaccine safety issues as they arise.

Recommendation 2 – Coordination

Recommendation 2.1 – Expanded role for the ISTF

The Federal Immunization Safety Task Force (ISTF) is a cross-government committee, including representatives from HHS agencies, DOD and DVA; is led by HHS; chaired by the ASH in his/her role as Director, NVP; and supported by NVPO. The ISTF should make regular reports, in accordance with the structure described in Recommendations 8.2. The VSWG recommends increasing the scope of the ISTF’s vaccine safety coordinating activities, under the leadership of the ASH and the Director, NVPO, to include establishing subcommittees in the following areas:

- Research
- Post-licensure surveillance
- Clinical Practice
- Communications
- Stakeholder and public engagement

Recommendation 2.2 – Expanded composition of the ISTF

The VSWG recommends that NVPO expand the membership of the ISTF to ensure representation from the agencies and Departments specified as contributing to the National Vaccine Program components outlined in P.L. 99-660, or subsequently redesignated or renamed agencies, including the Centers for Medicare and Medicaid Services, the Agency for Healthcare Research and Quality, and the US Agency for International Development.
Recommendation 3 – Research

Recommendation 3.1 – Development of a vaccine safety research agenda

The ISTF should develop and update on a regular basis, approximately every three to five years, an NVP-wide vaccine safety research agenda. Development and updating this agenda should utilize the ISTF Subcommittees specified in Recommendation 2.1, under the direction of the ISTF Subcommittee on Research. This agenda should address research in both vaccine safety science (e.g., epidemiological, clinical and laboratory studies) as well as post-licensure surveillance for adverse events. Key focus areas of this agenda should include, but not be limited to, identifying and addressing:

- needs and opportunities for eliminating unnecessary redundancy across these activities to make these research activities more effective and efficient,
- needs and opportunities for new or redirected studies toward reducing or eliminating gaps in knowledge relevant to vaccine safety,
- needs and opportunities to assess the potential risks of vaccines currently in use
- strengths and limitations of the processes for assessing vaccine safety before and after licensure
- existing basic research programs and findings that may have applicability in the broader scope of vaccine safety research, to create linkages between these research programs to improve the broader knowledge of vaccine safety science.

Recommendation 3.2 – Building a vaccine safety research community

Given that research into vaccine safety is broadly defined to contain a variety of fields and disciplines, including, but not limited to, immunology, clinical practice, epidemiology, pathophysiology, the NVP should implement the following coordination efforts, with the assistance of the ISTF Subcommittee on Research (see Recommendation 2.1):

- Facilitate a community of vaccine safety researchers that crosses the boundaries from basic research, clinical research and epidemiology to ensure continuity of research from different arenas, entities, and disciplines.
- Share vaccine safety-related research findings with all members of the ISTF at regular monthly Task Force meetings;
- Leverage existing infrastructure and investments for vaccine safety research, such as CISA, the National Children’s Study, and others.
- Engage vaccine manufacturers to capitalize on their expertise, large preclinical and clinical databases, specimen repositories and scientific resources to inform further vaccine safety studies
- Coordinate the development, implementation and periodic update of the National Vaccine Safety Scientific Agenda, as described in Recommendation 3.1.
- Ensure there is feedback between stakeholders within the vaccine safety enterprise so that research findings translate into safer products and guidelines for their use when appropriate.

Recommendation 3.3 – Research funding and investigator training

- The NIH should develop processes to identify and link multi-disciplinary intramural and extramural vaccine safety research programs and funding, including encouraging researchers to highlight if research may have a potential application to vaccinology and vaccine safety through targeted applications of keywords and requested reviewers, and through appropriate revisions of “PA-08-256: Research to Advance Vaccine Safety” to ensure a wide range of applicability across multiple disciplines.
- HHS and its related agencies, along with academic partners and professional organizations, should
• HHS and its related agencies, along with academic partners and professional organizations should support training in vaccine safety for scientists in non-biomedical research areas (e.g. cost/benefit analyses, quality assurance, and policy analysis).

Recommendation 3.4 – Ascertainment of public concerns and perceptions

The CDC should evaluate the usefulness of rapidly deployed and analyzed public opinion polling and active monitoring of electronic media to ascertain public concerns and perceptions about vaccine safety. Findings should be used to inform both the vaccine safety research agenda and communications programs.

Recommendation 3.5 – Research directed to clinical practice

• The NVP, working through the ISTF Subcommittees on Research and Clinical Practice (See Recommendation 2.1) and relevant non-governmental partners (e.g., the CISA Network) should coordinate research to improve clinical guidance and methods for the identification, evaluation, clinical management and reporting of adverse events, including information on clinical follow-up for individuals who experience AEFI. Best practices identified from sources such as the DOD Vaccine Healthcare Centers, AHRQ, and the Brighton Collaboration should be utilized to the greatest possible extent.

• CDC and FDA should develop a consistent and systematic approach, using VAERS or another related reporting mechanism, to characterize the extent to which vaccine administration errors occur and implement strategies for reducing them as appropriate for quality improvement and patient safety. The long-term goal of this approach is to establish a standard mechanism for surveillance of administration errors.

Recommendation 3.6 – Data access

The NVPO should establish a temporary expert committee, such as the IOM, to look at the feasibility of and mechanisms/structure for providing/ensuring responsible access by researchers to preclinical, clinical, and post-licensure vaccine safety data. The committee should consider the strengths and weaknesses of developing a data center that may include:

• final data that were used for decisions about vaccine safety (following “reproducible research” strategies),
• general data that have not been used for a specific adverse event, such as VSD, CISA, and associated specimen banks, to the extent possible, and
• preclinical, clinical, and post-licensure data that are part of the application process.

Recommendation 3.7 – Biological specimens

CDC and the CISA Network should complete planning and implement recommendations for the enhancement of a National Vaccine Safety Biospecimen Repository linking biological samples to clinical data for unusual AEFI to accelerate studies of biological mechanism and subpopulations at increased risk for adverse events.
Recommendation 4 – Post-Licensure Surveillance

Recommendation 4.1 – Post-licensure surveillance plans for new vaccines

The ISTF Subcommittee on Post-Licensure Surveillance (see Recommendation 2.1) should convene relevant Federal agencies and Departments, at appropriate times, to review established proactive action plans for post-licensure vaccine safety evaluations, to ensure coordination of activities and to develop a systematic, integrated approach to post-marketing surveillance plans that includes FDA requests for post-licensure monitoring, CDC commitments to VSD data analysis, and participation from other Federal agencies and Departments that may contribute to coordinated post-licensure surveillance.

Recommendation 4.2 – Post-licensure surveillance data considerations

The ISTF Subcommittee on Post-Licensure Surveillance should incorporate the following components into the plans reviewed as in Recommendation 4.1:

- Ensure vaccine safety data are collected on ACIP-recommended vaccine usage not covered by FDA-approved labeling; Utilizing coordination efforts detailed in Recommendation 2 and research coordination efforts detailed in Recommendation 3.2, post-licensure vaccine safety surveillance activities should be informed by manufacturer’s expertise and experience with pre-licensure clinical trials.
- Utilize and fully take advantage of the FDA Sentinel Project for expanding the population under active surveillance to 100 million by 2012 to do signal detection, validation and confirmation. Special attention should be given to federal initiatives on electronic health and immunization records and alternative ways to link data, and under-represented groups, such as minority populations.

Recommendation 4.3 – Implementation of post-licensure surveillance programs

The ISTF, representing the NVP-coordinated agencies and Departments, should lead the efforts to implement the national agenda to enhance post-licensure surveillance (see Recommendation 3.1) and the post-licensure surveillance plans for new vaccines or vaccine formulations/combinations (see Recommendation 4.1)

Recommendation 5 – Clinical Practice

Recommendation 5.1 – Utilizing improvements to clinical practice

The ISTF Subcommittee on Clinical Practice should ensure dissemination of information on the following topics:

- Improved clinical guidance to clinicians on the identification, evaluation, clinical management and reporting of adverse events, particularly when advances in clinical practice, as described in Recommendation 3.5 are made and published. An example of this type of guidance is the CISA hypersensitivity algorithm.
- Clinical practice activities that can prevent adverse events associated with vaccine administration errors, particularly when advances are made in examining the occurrence of these errors, as described in Recommendation 3.5.
Recommendation 5.2 – Barcode labeling of vaccines

Acknowledging efforts currently underway at FDA, the VSWG is supportive of efforts to create a routine system of barcode labeling of vaccine vials and pre-filled syringes that is compatible, ideally, with international standards.

Recommendation 6 – Communications

- The ISTF Subcommittee on Communications (see Recommendation 2.1) should ensure development and maintenance of a unified program of public information about vaccines, vaccine safety and the vaccine safety system that can serve as a resource to the public and health professionals. This information should be available, at a minimum, through a publicly accessible web site, such as Vaccines.gov. This program, and associated dissemination tools, should focus on establishing and maintaining links to specific agencies information about the safety, efficacy and effectiveness of each licensed vaccine, including:
 - the Vaccine Information Statement;
 - the official package insert, as prepared and issued by FDA and the FDA’s analysis provided to VRBPAC;
 - summaries of the design, scope, and results of the key clinical trials that supported licensure;
 - summaries of the design, scope, and results of any post-licensure clinical trials required by FDA or being conducted under the auspices of one or more of the other NVP-participating agencies;
 - abstracts of product-specific peer-reviewed research reports published after licensure;
 - abstracts of ongoing product-specific research studies funded by HHS or other Departments of the Federal Government; and
 - a clearer public explanation of each agency’s role in post-licensure vaccine safety.

- This communications plan also should focus on utilizing existing mechanisms, and where necessary establishing mechanisms, and publicizing various means by which members of the public can obtain information about vaccines.

- The CDC should utilize and disseminate findings from research into public concerns (see Recommendation 3.4) to develop communications tools applicable to address public concerns and perceptions.

- CDC and FDA should improve methods for communication about the extent to which follow-up to individual VAERS reports may be conducted.

Recommendation 7 – Stakeholder and Public Engagement

- The ASH should direct NVPO to work with NVAC and the ISTF Subcommittee on Stakeholder and Public Engagement (see Recommendation 2.1) to develop and maintain an ongoing and meaningful program of appropriate stakeholder engagement around vaccine safety. This program should focus on ensuring that appropriate stakeholders and the public have the opportunity to regularly provide feedback, through routine stakeholder and public engagement processes, during planning and evaluation of major NVP activities, such as the development of the vaccine safety research agenda (see Recommendation 3.1) and NVAC reviews of NVP activities.

- This program also should publicize various means by which members of the public can share concerns and recommendations about vaccine safety not related to a specific occurrence of a specific AEFI, as would be reported through VAERS.
- The ASH should direct NVPO to continue work with NVAC and the NVP-coordinated agencies to ensure that all vaccine safety-focused engagement activities benefit regularly from expert advice representing all pertinent scientific and technical disciplines.

Recommendation 8 – Assurance and Accountability

Recommendation 8.1 – Enhanced role of the National Vaccine Advisory Committee

The Secretary, HHS, should assign NVAC a broader and stronger role regarding independent, periodic review and evaluation of the NVP. NVAC, through the Standing Working Group on Vaccine Safety (see Recommendation 1.3), should assess whether NVP-coordinated agencies are coordinating their efforts effectively and creating appropriate NVP-wide agendas; whether these agendas are being implemented and their objectives met; and whether NVP-coordinated agencies are complying with performance expectations defined by the Secretary and other Secretarial guidance. NVAC should communicate the outcomes of its assessments in a transparent manner to the Secretary through the ASH.

Recommendation 8.2 – Relationship between ISTF and NVAC

The ISTF should meet at least annually with the NVAC Standing Working Group on Vaccine Safety (see Recommendation 1.3) and file an annual progress report, with an associated presentation at an NVAC meeting, on processes undertaken to monitor and evaluate vaccine safety, including but not limited to, meeting the recommendations specified in Recommendation 3 and 4. These regular meetings with the NVAC standing safety working group may occur through means other than in-person meetings (e.g. teleconference).

Recommendation 8.3 – External assessment of adverse event causality

To resolve difficult scientific questions through external scientific review of available evidence and provide regular updates to the Vaccine Injury Table, a mechanism should be developed to conduct causality evaluation of selected vaccine adverse events. On an annual basis, the ISTF, in consultation with the NVAC standing working group on vaccine safety, will conduct a review of potential topics for examination, based on adverse events following immunization for which a review of causality is warranted and there is scientific literature addressing the topic. If serious adverse events that meet these criteria are identified, the Secretary, HHS, should request that an independent panel, such as an IOM Committee, assess the causal relationship between the identified vaccine(s) and suspected adverse event(s).

Recommendation 8.4 – Assurance and accountability of progress in enhancing the vaccine safety system

To assure progress in enhancing the vaccine safety system, as highlighted in the above recommendations, there is need for a formal mechanism for review and accountability. Several options were presented to, or identified by, the VSWG through a variety of activities including prior stakeholder and public engagement during the VSWG Task 1, the Task 2 kick-off meeting, the April 2010 “Writing Group” meeting and deliberations by the VSWG and its Structure and Governance subgroup.

Three options have been discussed for external independent assurance related to vaccine safety, with the second of these options having three potential configurations. No decisions have been made by the VSWG, and the VSWG is still deliberating the options. They do not reflect the conclusions of the VSWG or any individual member, but are presented here for the purposes of discussion. In particular,
Recommendation 8.4 Option 3 had limited support on the VSWG but is presented here to get additional input from stakeholders.

Option 1: Empower NVAC to be responsible for vaccine safety assurance

The Executive Branch would not seek to create a vaccine-safety oversight entity outside HHS. Instead, NVAC would continue to be the advisory entity primarily responsible for evaluating NVP programs and commissioning vaccine-specific investigations. Opportunities exist for HHS to enhance NVAC’s standing and authorities, as described in Recommendations 1.1, 1.3, 7, 8.1, and 8.2.

Option 2: Establish a fixed-tenure panel outside HHS to monitor the efforts of NVP and NVAC, respectively, to improve the vaccine safety system

During its defined tenure (e.g., 5 years), the panel would be responsible for evaluating the progress of NVP in implementing enhancements to the vaccine safety system and the effectiveness of NVAC in performing independent evaluations of NVP activities. The panel would have an organizational locus outside HHS. The host administrative entity would have a role in establishing the panel, arranging for funding and other resources as necessary, receiving the panel’s reports containing its findings and recommendations regarding the vaccine safety system, and sharing those reports with officials within the Executive Branch, members of the Congress, and the general public.

Among the questions that the panel might address are a) Are the NVP-participating entities being appropriately responsive to the Secretary and the ASH in enhancing the vaccine safety system? b) Are NVP-wide initiatives properly focused, achieving high quality, and proceeding with appropriate speed? c) Is NVAC receiving the operational flexibility and resources necessary to be effective and credible in evaluating NVP activities? d) Are NVP activities and NVAC evaluations, taken together, sufficient to foster public confidence in the vaccine safety system? Or should an Independent Agency be created to oversee the system?; and e) If such an Independent Agency be needed, what should be its characteristics?

The panel could exist in any one of a variety of forms. Three potential options are presented below.

Option 2a: Establish the panel as a Presidential Commission

Under this option, the President would establish the Commission by some appropriate means (e.g., Executive Order) to carry out the monitoring and reporting activities. Most likely, the President also would designate a senior official with the Executive Office of the President to ensure that the Commission receives requisite support, to receive and disseminate its reports, and to advise the President regarding necessary follow up actions, if any.

The President would appoint or arrange for appointment of the members of the Commission in accord with whatever process he or his designee deems appropriate, including possible participation the Congress. For example, the Commission could have 8 members – 4 appointed by the President and 4 appointed by the key Congressional committees whose purviews include vaccine safety (respectively, the Senate Committee on Health, Education, Labor, and Pensions; the House Committee on Energy and Commerce; the Senate Committee on Appropriations; and the House Committee on Appropriations).

Option 2b. Establish the panel as an IOM Committee

The host administrative entity (e.g., a component of the Executive Office of the President) would contract with IOM to carry out the monitoring and reporting activities. IOM would appoint the members of the Committee in accord with whatever process it deems appropriate. The host administrative entity would
be responsible for ensuring that the Committee has the requisite support, for receiving and disseminating its reports, and for advising the President regarding necessary follow up actions, if any.

Option 2c: Create an Independent Agency within the Executive Branch to oversee the vaccine safety system, primarily NVP and NVAC.\(^2\)\(^3\)

A new Independent Agency within the Executive Branch would be responsible for oversight of the vaccine safety system. In particular, the Agency would evaluate NVP programs and commission vaccine-specific investigations by NVP-coordinated agencies (e.g., FDA) or by non-government entities (e.g., IOM).

Option 3: Create an Independent Agency within the Executive Branch to focus on the safety of vaccines.\(^4\)

A new Independent Agency within the Executive Branch would assume responsibility for operating VAERS and possibly other vaccine-safety related programs (e.g., VSD). In addition, the Agency would have authority to commission vaccine-specific investigations by NVP-coordinated agencies (e.g., FDA) or by non-government entities (e.g., IOM). The Agency would develop findings and recommendations regarding vaccine safety and share them with NVP and the general public.

Recommendation 9 – Cost evaluation of recommendations

The NVPO should coordinate, across the relevant Departments and Agencies, a cost evaluation of the recommendations in this report approved by the NVAC. This evaluation should be presented to the NVAC at a regularly scheduled NVAC meeting.

\(^2\) The term “Independent Agency” refers to an entity of the Executive Branch (e.g., the National Transportation Safety Board or the Consumer Products Commission) that is not part of a Cabinet Department. As a general rule, the Executive Office of the President and the Congress, respectively, relate to Independent Agencies through the same management and budget processes that apply to Cabinet Departments.

\(^3\) A new unit within the Executive Office of the President (EOP) would be an alternative to a new Independent Agency. Pertinent precedents are the Office of National Drug Control Policy and the Council on Environmental Quality. Because proximity to the President is the exception rather than the rule insofar as operating programs are concerned, creation of a new EOP unit almost certainly would be more difficult to justify than creation of a new Independent Agency.

\(^4\) Footnotes 2 and 3 above apply to Option 4 as well as to Option 3.
7. References

37. Deer B. How the case against the MMR vaccine was fixed. BMJ. 2011;342:c5347.

38. Deer B. Secrets of the MMR scare. How the vaccine crisis was meant to make money. BMJ. 2011;342:c5258.

63. National Childhood Vaccine Injury Act of 1986, 42 USC 6A § 300aa-1 to § 300aa-34.

Food and Drug Administration. About the Center for Biologics Evaluation and Research > FY 2009 Annual Report. 2010;

8. Tables

Table of Tables

Table 1. Impact of vaccines on vaccine-preventable diseases in the United States compared to the pre-vaccine era. ... 59
Table 2. Vaccination coverage estimates for children 19-35 months, National Immunization Survey, United States, 1994, 2000, 2009. .. 60
Table 3. Vaccination coverage estimates for adolescents and adults, National Immunization Survey-Teen Module and National Health Interview Survey, United States, 2009. ... 61
Table 1. Impact of vaccines on vaccine-preventable diseases in the United States compared to the pre-vaccine era.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Reported Illness before Vaccine</th>
<th>Reported cases 2009</th>
<th>Percent Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallpox</td>
<td>29,005</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>21,053</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Polio (paralytic)</td>
<td>16,316</td>
<td>1</td>
<td>> 99%</td>
</tr>
<tr>
<td>Measles</td>
<td>530,217</td>
<td>71</td>
<td>> 99%</td>
</tr>
<tr>
<td>Rubella</td>
<td>47,745</td>
<td>3</td>
<td>> 99%</td>
</tr>
<tr>
<td>Congenital Rubella Syndrome</td>
<td>152</td>
<td>2</td>
<td>99%</td>
</tr>
<tr>
<td>Haemophilus influenza (Hib)</td>
<td>20,000</td>
<td>213</td>
<td>99%</td>
</tr>
<tr>
<td>Mumps</td>
<td>162,344</td>
<td>1,991</td>
<td>99%</td>
</tr>
<tr>
<td>Tetanus</td>
<td>580</td>
<td>18</td>
<td>97%</td>
</tr>
<tr>
<td>Pertussis (whooping cough)</td>
<td>200,752</td>
<td>16,858</td>
<td>92%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Dose assessment</th>
<th>1994(^{456})</th>
<th>2000(^{45})</th>
<th>2009(^{4})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% (95% CI)</td>
<td>% (95% CI)</td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>DTP/DT/DTaP</td>
<td>3+ doses</td>
<td>93 (±0.7)</td>
<td>94 (±0.5)</td>
<td>95 (±0.6)</td>
</tr>
<tr>
<td>DTP/DT/DTaP</td>
<td>4+ doses</td>
<td>77 (±1.1)</td>
<td>82 (±0.8)</td>
<td>84 (±1.0)</td>
</tr>
<tr>
<td>Poliovirus</td>
<td>3+ doses</td>
<td>83 (±1.0)</td>
<td>90 (±0.6)</td>
<td>93 (±0.7)</td>
</tr>
<tr>
<td>Haemophilus influenza type b</td>
<td>3+ doses</td>
<td>86 (±0.9)</td>
<td>93 (±0.5)</td>
<td>84 (±1.0)</td>
</tr>
<tr>
<td>Measles-containing / MMR</td>
<td>1+ dose(s)</td>
<td>89 (±0.9)</td>
<td>91 (±0.6)</td>
<td>90 (±0.8)</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>3+ doses</td>
<td>37 (±1.2)</td>
<td>90 (±0.6)</td>
<td>92 (±0.7)</td>
</tr>
<tr>
<td>Varicella</td>
<td>1+ dose(s)</td>
<td>N/A</td>
<td>68 (±0.9)</td>
<td>90 (±0.8)</td>
</tr>
<tr>
<td>PCV</td>
<td>3+ doses</td>
<td>N/A</td>
<td>N/A</td>
<td>93 (±0.7)</td>
</tr>
<tr>
<td>PCV</td>
<td>4+ doses</td>
<td>N/A</td>
<td>N/A</td>
<td>80 (±1.2)</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>2+ doses</td>
<td>N/A</td>
<td>N/A</td>
<td>47 (±1.4)</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>Vaccine-type appropriate</td>
<td>N/A</td>
<td>N/A</td>
<td>44 (±1.4)</td>
</tr>
<tr>
<td>4:3:1 combined series(^*)</td>
<td></td>
<td>75 (±1.2)</td>
<td>78 (±0.9)</td>
<td>N/A</td>
</tr>
<tr>
<td>4:3:1:3:3:1 combined series(^\dagger) with Hib excluded</td>
<td>N/A</td>
<td>N/A</td>
<td>78 (±1.1)</td>
<td></td>
</tr>
<tr>
<td>4:3:1:3:3:1:4 combined series(^\S) with Hib excluded</td>
<td>N/A</td>
<td>N/A</td>
<td>64 (±1.2)</td>
<td></td>
</tr>
<tr>
<td>4:3:1:3:3:1:4 combined series(^\S) with Hib excluded</td>
<td>N/A</td>
<td>N/A</td>
<td>71 (±1.2)</td>
<td></td>
</tr>
</tbody>
</table>

\(^*\)- DTP/DT; poliovirus; measles-containing
\(^\dagger\)- DTP/DT/DTaP; poliovirus, measles-containing, Hib, hepatitis B
\(^\S\)- DTP/DT/DTaP; poliovirus, measles-containing, Hib, hepatitis B; varicella, PCV
Table 3. Vaccination coverage estimates for adolescents and adults, National Immunization Survey-Teen Module\(^6\) and National Health Interview Survey\(^7\), United States, 2009.

<table>
<thead>
<tr>
<th>Vaccine, dose assessment</th>
<th>Population</th>
<th>% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMR, 2+ doses</td>
<td>Adolescents, aged 13-17</td>
<td>89.1 (88.3-89.9)</td>
</tr>
<tr>
<td>Hepatitis B, 3+ doses</td>
<td>Adolescents, aged 13-17</td>
<td>89.9 (89.2-90.6)</td>
</tr>
<tr>
<td>Hepatitis B, 3+ doses</td>
<td>Adults, high-risk, aged 19-49</td>
<td>41.8 (38.4-45.4)</td>
</tr>
<tr>
<td>Hepatitis B, 3+ doses</td>
<td>Adults, not high-risk, aged 19-49</td>
<td>33.7 (32.6-34.9)</td>
</tr>
<tr>
<td>Varicella (history of disease or 2+ doses of varicella vaccine)</td>
<td>Adolescents, aged 13-17</td>
<td>75.7 (74.6-76.8)</td>
</tr>
<tr>
<td>Herpes zoster(shingles), ever</td>
<td>Adults, aged 60+</td>
<td>10.0 (9.1-11.0)</td>
</tr>
<tr>
<td>Td or Tdap, 1+ dose since age 10</td>
<td>Adolescents, aged 13-17</td>
<td>76.2 (75.1-77.2)</td>
</tr>
<tr>
<td>Td or Tdap, 1+ dose in past 10 years</td>
<td>Adults, aged 19-49</td>
<td>63.1 (61.9-64.2)</td>
</tr>
<tr>
<td>Td or Tdap, 1+ dose in past 10 years</td>
<td>Adults, aged 50-64</td>
<td>62.8 (61.3-64.3)</td>
</tr>
<tr>
<td>Td or Tdap, 1+ dose in past 10 years</td>
<td>Adults, aged 65+</td>
<td>52.8 (51.0-54.6)</td>
</tr>
<tr>
<td>Meningococcal meningitis</td>
<td>Adolescents, aged 13-17</td>
<td>53.6 (52.4-54.9)</td>
</tr>
<tr>
<td>Human papillomavirus, 1+ dose</td>
<td>Adolescents aged 13-17</td>
<td>44.3 (42.4-46.1)</td>
</tr>
<tr>
<td>Human papillomavirus, 1+ dose</td>
<td>Female adults, aged 19-26</td>
<td>17.1 (14.8-19.7)</td>
</tr>
</tbody>
</table>

\(^{\ast}\) DTP/DT; poliovirus; measles-containing
\(^{\dagger}\) DTP/DT/DTaP; poliovirus, measles-containing, Hib, hepatitis B
\(^{\S}\) DTP/DT/DTaP; poliovirus, measles-containing, Hib, hepatitis B; varicella, PCV
9. Figures

Table of Figures

Figure 1. Design of the current US Federal vaccine safety system... 63
Figure 2. Proposed feedback loop between research, surveillance and response functions of the vaccine safety system.. 64
Figure 1. Design of the current US Federal vaccine safety system.
Figure 2. Proposed feedback loop between research, surveillance and response functions of the vaccine safety system.
10. Appendices

Table of Appendices

Appendix 1. Glossary of abbreviations... 66
Appendix 2. National Vaccine Advisory Committee Vaccine Safety Working Group membership, non-
Federal Government members... 68
Appendix 3. National Vaccine Advisory Committee Vaccine Safety Working Group, Federal ex officio
representatives*... 69
Appendix 4. Agenda, with detailed panelist list, for VSWG kick-off meeting, July 15-16, 200970
Appendix 5. Information gathering briefings held by the VSWG biomechanisms subgroup73
Appendix 6. Information gathering briefings held by the VSWG epidemiology and surveillance subgroup
..74
Appendix 7. Evaluation criteria .. 75
Appendix 8. Key vaccine safety system functions as identified by the Vaccine Safety Working Group.. 87
Appendix 9. Attributes of a vaccine safety system identified by the Vaccine Safety Working Group....88
Appendix 10. April 11-13, 2010 Salt Lake City meeting memorandum...89

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCV</td>
<td>Advisory Commission on Childhood Vaccines</td>
</tr>
<tr>
<td>ACIP</td>
<td>Advisory Committee on Immunization Practices</td>
</tr>
<tr>
<td>AEFI</td>
<td>Adverse Event(s) Following Immunization</td>
</tr>
<tr>
<td>AHIP</td>
<td>America’s Health Insurance Plans</td>
</tr>
<tr>
<td>ASH</td>
<td>Assistant Secretary for Health</td>
</tr>
<tr>
<td>ASTHO</td>
<td>Association of State and Territorial Health Officials</td>
</tr>
<tr>
<td>CBER</td>
<td>Center for Biologies Evaluation and Research</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CISA</td>
<td>Clinical Immunization Safety Assessment Network</td>
</tr>
<tr>
<td>CMS</td>
<td>Centers for Medicare and Medicaid Services</td>
</tr>
<tr>
<td>CTSA</td>
<td>Clinical and Translational Science Awards</td>
</tr>
<tr>
<td>CQI</td>
<td>Continuous Quality Improvement</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DTP</td>
<td>Diphtheria/Tetanus/Whole-cell Pertussis vaccine</td>
</tr>
<tr>
<td>DT</td>
<td>Diphtheria/Tetanus vaccine</td>
</tr>
<tr>
<td>DTaP</td>
<td>Diphtheria/Tetanus/acellular Pertussis vaccine</td>
</tr>
<tr>
<td>DVA</td>
<td>Department of Veterans Affairs</td>
</tr>
<tr>
<td>EIP</td>
<td>Emerging Infections Program</td>
</tr>
<tr>
<td>EIS</td>
<td>Epidemic Intelligence Service</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>GBS</td>
<td>Guilian-Barre Syndrome</td>
</tr>
<tr>
<td>Hib</td>
<td>Haemophilus influenzae type b</td>
</tr>
<tr>
<td>HHS</td>
<td>Department of Health and Human Services</td>
</tr>
<tr>
<td>HMO</td>
<td>Health Maintenance Organization</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papillomavirus</td>
</tr>
<tr>
<td>HRSA</td>
<td>Health Resources and Services Administration</td>
</tr>
<tr>
<td>IAVG</td>
<td>Interagency Vaccine Group</td>
</tr>
<tr>
<td>ICD-9</td>
<td>International Classification of Diseases, 9th Revision</td>
</tr>
<tr>
<td>IHS</td>
<td>Indian Health Service</td>
</tr>
<tr>
<td>IIS</td>
<td>Immunization Information Systems</td>
</tr>
<tr>
<td>IOM</td>
<td>Institute of Medicine</td>
</tr>
<tr>
<td>IPV</td>
<td>Inactivated Polio Vaccine</td>
</tr>
<tr>
<td>ISO</td>
<td>Immunization Safety Office (of the CDC)</td>
</tr>
<tr>
<td>ISTF</td>
<td>Immunization Safety Task Force</td>
</tr>
<tr>
<td>LLDB</td>
<td>Large linked databases</td>
</tr>
<tr>
<td>MCO</td>
<td>Managed care organization</td>
</tr>
<tr>
<td>MCV4</td>
<td>Quadrivalent meningococcal conjugate vaccine</td>
</tr>
<tr>
<td>MMR</td>
<td>Measles, Mumps, Rubella vaccine</td>
</tr>
<tr>
<td>MMR-V</td>
<td>Measles, mumps, rubella, varicella vaccine</td>
</tr>
<tr>
<td>NIAID</td>
<td>National Institute of Allergy and Infectious Disease</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>NCVIA</td>
<td>National Childhood Vaccine Injury Act of 1986</td>
</tr>
<tr>
<td>NVAC</td>
<td>National Vaccine Advisory Committee</td>
</tr>
<tr>
<td>NVP</td>
<td>National Vaccine Program</td>
</tr>
<tr>
<td>NVPO</td>
<td>National Vaccine Program Office</td>
</tr>
<tr>
<td>ONC</td>
<td>Office of the National Coordinator for Health Information Technology</td>
</tr>
<tr>
<td>OPV</td>
<td>Oral Polio Vaccine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PCV</td>
<td>Pneumococcal conjugate vaccine</td>
</tr>
<tr>
<td>PCV-1</td>
<td>Porcine circovirus type 1</td>
</tr>
<tr>
<td>PRISM</td>
<td>Post-Licensure Rapid Immunization Safety Monitoring System</td>
</tr>
<tr>
<td>RCA</td>
<td>Rapid cycle analysis</td>
</tr>
<tr>
<td>RTIMS</td>
<td>Real Time Immunization Monitoring system</td>
</tr>
<tr>
<td>Tdap</td>
<td>Tetanus/Diphtheria/acellular pertussis vaccine</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>VAERS</td>
<td>Vaccine Adverse Events Reporting System</td>
</tr>
<tr>
<td>VAMPSS</td>
<td>Vaccines and Medications in Pregnancy Surveillance System</td>
</tr>
<tr>
<td>VAPP</td>
<td>Vaccine-associated paralytic polio</td>
</tr>
<tr>
<td>VHC</td>
<td>Vaccine Healthcare Center (of DOD)</td>
</tr>
<tr>
<td>VICP</td>
<td>National Vaccine Injury Compensation Program</td>
</tr>
<tr>
<td>VSD</td>
<td>Vaccine Safety Datalink</td>
</tr>
<tr>
<td>VSRAWG</td>
<td>Vaccine Safety Risk Assessment Working Group</td>
</tr>
<tr>
<td>VSWG</td>
<td>Vaccine Safety Working Group</td>
</tr>
<tr>
<td>VRBPAC</td>
<td>Vaccines and Related Biologic Products Advisory Committee</td>
</tr>
<tr>
<td>VTEU</td>
<td>Vaccine Trials Evaluation Unit</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Group representation / Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tawny Buck* †</td>
<td>Director of Government Relations, National Vaccine Information Center Member, ACCV</td>
<td>Public Representative / Parent of a child injured by a vaccine</td>
</tr>
<tr>
<td>Marie McCormick, MD, ScD* †</td>
<td>Summer and Esther Feldberg Professor of Maternal and Child Health, Harvard School of Public Health</td>
<td>Academia / Maternal and Child Health</td>
</tr>
<tr>
<td>Andrew Pavia, MD* †</td>
<td>George and Esther Gross Presidential Professor, Department of Pediatrics, University of Utah School of Medicine</td>
<td>Pediatric and Adult Infectious Disease</td>
</tr>
<tr>
<td>Robert L. Beck, JD</td>
<td>Former ACIP Member</td>
<td>Public Representative / International business/law</td>
</tr>
<tr>
<td>Guthrie S. Birkhead, MD, MPH* §</td>
<td>Deputy Commissioner, Office of Public Health, New York State Department of Health</td>
<td>State Health Department / Epidemiology</td>
</tr>
<tr>
<td>Christopher Carlson, PhD</td>
<td>Fred Hutchinson Cancer Research Center</td>
<td>Academia / Genomics</td>
</tr>
<tr>
<td>Vicky Debold, PhD, RN</td>
<td>Affiliate Faculty, Health Administration and Policy Department, George Mason University, VRBPAC Member</td>
<td>Public Representative / Public Health and Nursing</td>
</tr>
<tr>
<td>Cornelia Dekker, MD</td>
<td>Professor of Pediatrics and Medical Director, Stanford-LPCH Vaccine Program, Division of Pediatric Infectious Diseases, Stanford University School of Medicine</td>
<td>Academia / Pediatrics</td>
</tr>
<tr>
<td>Lance Gordon, PhD</td>
<td>ImmuNoBiologics Corp.</td>
<td>Industry / Immunology</td>
</tr>
<tr>
<td>Sean Hennessy, PharmD, PhD</td>
<td>Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine</td>
<td>Academia / Pharmacoepidemiology</td>
</tr>
<tr>
<td>Clement Lewin, PhD, MBA*</td>
<td>Head, Strategic Immunization Planning, Novartis Vaccines and Diagnostics</td>
<td>Industry / Immunization Policy</td>
</tr>
<tr>
<td>James O. Mason, MD, DrPH*</td>
<td>Former Director of the Centers for Disease Control and Prevention and Assistant Secretary for Health</td>
<td>Public Health</td>
</tr>
<tr>
<td>William Raub, PhD</td>
<td>Former Deputy Director of the National Institutes of Health and Science Advisory to the Secretary, Department of Health and Human Services</td>
<td>Public Health</td>
</tr>
<tr>
<td>Litjen (L.J.) Tan, PhD, MS*</td>
<td>Director, Medicine and Public Health, American Medical Association</td>
<td>Professional Organization / Immunology and Policy</td>
</tr>
</tbody>
</table>

Consultants:

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Group representation / Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Feinberg, MD, PhD *</td>
<td>Vice President for Policy, Public Health and Medical Affairs, Merck Vaccine Division, Merck & Co., Inc.</td>
<td>Industry / Immunology</td>
</tr>
<tr>
<td>Steven Goodman, MD, PhD</td>
<td>Professor and Co-Director, Epidemiology Doctoral Program, Johns Hopkins Bloomberg School of Public Health</td>
<td>Academia / Biostatistics and Epidemiology</td>
</tr>
<tr>
<td>Lawrence Gostin, JD, LL.D. (Hon)</td>
<td>Associate Dean, Professor of Global Health, Georgetown University Law Center</td>
<td>Academia / Ethics and Law</td>
</tr>
<tr>
<td>Gerald Medoff, MD</td>
<td>Division of Infectious Diseases, Washington University School of Medicine</td>
<td>Academia / Immunology</td>
</tr>
</tbody>
</table>

* NVAC Member † Working Group co-chair § NVAC Chair
Appendix 3. National Vaccine Advisory Committee Vaccine Safety Working Group, Federal ex officio representatives*

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Ball, MD, MPH, ScM</td>
<td>Centers for Biologics Evaluation and Research, Food and Drug Admin</td>
</tr>
<tr>
<td>Norman Baylor, PhD</td>
<td>Center for Biologics Evaluation and Research, Food and Drug Admin</td>
</tr>
<tr>
<td>Jessica Bernstein, MPH</td>
<td>National Institute of Allergy and Infectious Diseases, NIH</td>
</tr>
<tr>
<td>Vito Caserta, MD</td>
<td>Countermeasures Injury Compensation Program, HRSA</td>
</tr>
<tr>
<td>Geoff Evans, MD</td>
<td>National Vaccine Injury Compensation Program, HRSA</td>
</tr>
<tr>
<td>Rita Helfand, MD</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>Karen Midthun, MD</td>
<td>Center for Biologics Evaluation and Research, Food and Drug Admin</td>
</tr>
<tr>
<td>Barbara Mulach, PhD</td>
<td>National Institute of Allergy and Infectious Diseases, NIH</td>
</tr>
<tr>
<td>Daniel Salmon, PhD</td>
<td>National Vaccine Program Office</td>
</tr>
<tr>
<td>Melinda Wharton, MD, MPH</td>
<td>National Center for Immunization and Respiratory Diseases, CDC</td>
</tr>
</tbody>
</table>

* Principal role was to provide information about aspects of the existing safety system rather than to formulate the Working Group’s conclusions and recommendations.
Appendix 4. Agenda, with detailed panelist list, for VSWG kick-off meeting, July 15-16, 2009

MEETING AGENDA

Charge to the Working Group:
Review the current federal vaccine safety system and develop a White Paper describing the infrastructure needs for a federal vaccine safety system to fully characterize the safety profile of vaccines in a timely manner, reduce adverse events whenever possible, and maintain and improve public confidence in vaccine safety.

July 15, 2009

8:30 am Joint NVAC Vaccine Safety Working Group meeting with the Interagency Autism Coordinating Committee
Location: The Polaris Room at the Ronald Reagan Building, 1300 Pennsylvania Avenue NW

10:00 am Transport (on own) to Humphrey Building, 200 Independence Ave SW
Location for all panels: Room 800

10:30 am Panel 1: Principles and policy alternatives for a robust vaccine safety system

Topics of discussion may include:
- What are the basic principles that should guide the vaccine safety system?
- What aspects of the current vaccine safety system are important and/or insufficient to meet these principles?
- What policy approaches could be considered, and what are the strengths and weaknesses of these approaches?
- How can we bring together stakeholders to improve the vaccine safety system?
- How can coordination, integration, and/or organizational structure be enhanced?

Participants:
Mark Blaxill, SafeMinds
Louis Cooper, Columbia University
Robert Davis, Kaiser Permanente of Georgia
Neal Halsey, Johns Hopkins University
Gregory Poland, Mayo Clinic and Foundation

12:00 pm Welcoming remarks by Dr. Howard Koh, Assistant Secretary for Health and Director of the National Vaccine Program

12:30 pm Lunch - Discussion of H1N1 Vaccine Safety Monitoring
Food for purchase at HHS Cafeteria

2:00 pm Panel 2: Identifying innovative ways of overcoming gaps in vaccine safety science infrastructure

Topics of discussion may include:
- What are important strengths and/or deficiencies in the current vaccine safety science infrastructure?
- What new ways, technologies, or data sources are available to address some of these deficiencies?
- How can coordination, integration, and/or organizational structure be enhanced?

Participants:
Steve Black, Cincinnati Children’s Hospital
Geraldine Dawson, Autism Speaks
Kathryn Edwards, Vanderbilt University
July 16, 2009

8:30 am Panel 3: The ideal system to meet the needs of the public, public health, and healthcare professionals for confidence in vaccine safety

Topics of discussion may include:

- What are the basic principles that should guide the vaccine safety system?
- What aspects of the current vaccine safety system are important and/or insufficient to meet these principles?
- What mechanisms could meet public expectations for funding and conducting vaccine safety research?
- What information do providers and the public need to make informed decisions, and how can that information be best communicated?

Participants:
Sallie Bernard, SafeMinds
Thomas May, Medical College of Wisconsin
Lisa Randall, Immunization Action Coalition
David Sundwall, Utah Department of Health
David Tayloe, American Academy of Pediatrics
Collette Young, Oregon Department of Health

10:30 am Break

11:00 am Panel 4: Lessons from other safety arenas

Topics of discussion may include:

- What principles are important in your safety arena that may be important to vaccine safety?
- How does your safety arena effectively address uncertainty, gaps in knowledge, competing interests, and maintaining public confidence?
- How does your arena garner resources and support to prevent (rather than respond) to crises?
- What elements of infrastructure and organizational structure are important for achieving your principles and objectives?
- How are coordination and integration achieved in your safety arena?
- In your arena, how do you work effectively with stakeholders and the public?

Participants:
Michael Cohen, Institute for Safe Medical Practices
Robert Dodd, National Transportation Safety Board
Diane Osgood, Business for Social Responsibility
Richard Platt, Harvard University
Gerald Poje, Former Board Member of the U.S. Chemical Safety and Hazard Investigation Board

1:00 pm Lunch - Food for purchase at HHS Cafeteria
1:45 pm Panel 5: Enhancing the adoption and implementation of the NVAC white paper

Topics of discussion may include:
- What stakeholders are important to the success or failure of the NVAC white paper?
- How can the process of developing the white paper enhance its implementation?
- How does one balance the pros and cons of incrementalism with broader vision?
- How does one garner political/financial support and political will?

Participants:
Peter Bell, Autism Speaks
Paul Kim, Foley Hoag
Anthony Robbins, Tufts University
David Tayloe, American Academy of Pediatrics
Thomas Vernon, Sanofi Pasteur
Marguerite Evans Willner

3:45 pm Working Group closed discussion

5:00 pm Meeting adjourned

Invited Meeting Participants

NVAC Vaccine Safety Working Group
Robert L. Beck
Guthrie S. Birkhead (Chair of NVAC)
Tawny Buck (Co-Chair of Working Group)
Chris Carlson
Vicky Debold
Cornelia Dekker
Mark Feinberg
Lynn R. Goldman
Steve Goodman
Lance Gordon
Lawrence Gostin
Sean Hennessy
Paul-Henri Lambert
James O. Mason
Marie McCormick (Co-Chair of Working Group)
Gerald Medoff
Trish Parnell
Andrew Pavia (Co-Chair of Working Group)
William Raub
Bennett Shaywitz

Observers
Richard Clover, NVAC
Alina Baciu, IOM

Federal Officials
Frank DeStefano, CDC/ISO
Renata Engler, DoD
Geoff Evans, HRSA/VICP
Bruce Gellin, HHS/NVPO
Charles Hackett, NIH/NIAID
James Hanson, NIH/NICHD
Rita Helfand, CDC/ NCPDCID
Alice Kau, NIH/NICHD
Phil Krause, FDA/CBER
Nancy Levine, CDC/ISO
Barbara Mulach, NIH/NIAID
Melinda Neuhauser, VA
Stephanie Marshall, HHS/ASPA

Staff
Bob Bednarczyk
Anna DeBlois Buchanan, ASTHO
Kirsten Vannice, HHS/NVPO

The Keystone Center
Janesse Brewer
Appendix 5. Information gathering briefings held by the VSWG biomechanisms subgroup

- Immune providing and vaccine related activities
 - Chuck Hackett, NIH

- Coordination of NIH vaccine activities
 - Barbara Mulach, Sarah Landry, Chuck Hackett, NIH

- Causality evaluations performed by the Institute of Medicine
 - Kathleen Stratton, IOM

- National biospecimen repository
 - Phil LaRussa, Columbia University
 - Barbara Slade, CDC Immunization Safety Office

- Vaccine manufacturers role in identifying biomechanisms of adverse events
 - Mark Feinberg, Merck & Co., Inc.
 - Clem Lewin, Novartis Vaccines
 - Lance Gordon, Immunobiologics Corp.

- Clinical Immunization Safety Assessment network
 - Colin Marchant, Boston Medical Center and New England Medical Center
 - Neal Halsey, Johns Hopkins University
 - Kathryn Edwards, Vanderbilt University
Appendix 6. Information gathering briefings held by the VSWG epidemiology and surveillance subgroup

- Immunization surveillance and epidemiology for active duty military
 - Renata Engler, Department of Defense Vaccine Healthcare Centers Network
 - Hayley Hughes, Department of Defense Military Vaccine Agency

- Immunization surveillance and epidemiology for veterans
 - Fran Cunningham, Veterans Health Administration

- Post-licensure Rapid Immunization Safety Monitoring system
 - Tracy Lieu, Harvard Pilgrim Health Care

- Vaccine Safety Datalink
 - Tracy Lieu, Harvard Pilgrim Health Care;
 - Nicola Klein, Kaiser Permanente Northern California

- Public health informatics
 - Bill Brand, Public Health Informatics Institute

- Federal vaccine safety efforts
 - Frank DeStefano, CDC Immunization Safety Office
 - Bob Ball, FDA/Center for Biologics Evaluation and Research

- Barcode technology
 - Bruce Weniger, CDC

- Clinical Immunization Safety Assessment network
 - Colin Marchant, Boston Medical Center and New England Medical Center
 - Neal Halsey, Johns Hopkins University
 - Kathryn Edwards, Vanderbilt University

- Sentinel Initiative/Mini-Sentinel Program
 - Melissa Robb, FDA
Appendix 7. Evaluation criteria

3/4/10 DRAFT EVALUATION CRITERIA

Note about this document: These draft evaluation criteria should be used for discussion purposes only. They were prepared as a first draft to be considered by the VSWG and stakeholders more broadly. This document may lack necessary context without explanation. Please contact Heather Bergman of The Keystone Center with questions or comments related to this draft document. Ms. Bergman may be reached at hbergman@keystone.org.

Draft Evaluation Criteria
The Vaccine Safety Working Group’s charge is to review the current federal vaccine safety system and develop a White Paper describing the infrastructure needs for a federal vaccine safety system to fully characterize the safety profile of vaccines in a timely manner, reduce adverse events whenever possible, and maintain and improve public confidence in vaccine safety.

To that end, the criteria below will assist the Vaccine Safety Working Group (VSWG) in evaluating the relative strengths of both the current system and a range of alternatives. The evaluation criteria include three elements:

1. Draft essential functions of a vaccine safety system (what the system should do). Each system configuration (or “bundle”) is expected to fulfill each of the essential functions.
2. Draft key performance attributes that must guide the execution of a vaccine safety system (how the system should work).
3. Draft factors for considering the feasibility of alternative approaches to vaccine safety (whether a given approach is viable at present)

Stakeholder Involvement
The VSWG will seek stakeholder feedback and input on the draft essential functions, key performance attributes, and feasibility factors under consideration. The VSWG is additionally interested in whether there are priority attributes for different system functions. Lastly, the VSWG seeks feedback regarding the system configurations.

Steps to Selecting a System Configuration that Further Strengthens the Vaccine Safety System
In preparation for developing their recommendations, it is proposed that the VSWG would engage in the following steps:

a) Evaluate the current system or alternative system configurations based on how well each function is or would be performed. The goal of any proposed system should be to maximize the key performance attributes within each function. (Most or all of the key attributes are applicable to each function, although the importance of a given key performance attribute may vary from function to function.)

b) Once each system configuration is evaluated in terms of the functions and key performance attributes, evaluate the system configuration in terms of the feasibility factors.

c) The VSWG will seek to share some rationale for their final decisions and recommendations.

The following chart outlines the key performance attributes an ideal Vaccine Safety System would include. In some cases, these key performance attributes have been raised or supported by those external to the VSWG and we have outlined those comments in the third column.
Appendix 7 (cont). Evaluation criteria

<table>
<thead>
<tr>
<th>KEY PERFORMANCE ATTRIBUTES</th>
<th>EXPLANATION</th>
<th>RELEVANT PUBLIC, STAKEHOLDER, AND IOM COMMENT RAISED DECEMBER 2008-DECEMBER 2009*^</th>
</tr>
</thead>
</table>
| Accountability | Includes mechanisms to ensure that promises are kept, duties are performed, and compliance is forthcoming | Is there a way to increase citizen interaction, oversight, and dialogue with decision makers?*
Need accountability in the vaccine safety system.
* Issues marked with an asterisk (*) indicate those that were raised in public and/or stakeholder meetings during Task 1 or through the Request for Information (RFI) issued as part of Task 1.
\^ Several issues raised in public meetings during Task 1 as concerns about vaccine safety do not directly relate to issues of governance and structure for a robust vaccine safety system. Although important concerns, these have not been included in this table. The excluded concerns are: manufacturing security, vaccine effectiveness, mandated vaccines, and the role of insurance companies in vaccination.
*^ Issues marked with a caret (^) indicate those that were raised by stakeholders at the kickoff meeting on July 14-15, 2009. |
| Effectiveness | Complies consistently with all prescribed performance attributes, has a well-defined strategy for implementing missions, defines clear prioritization among candidate strategic initiatives, and reassesses/revisions strategy and priorities with experience | The National Vaccine Plan should incorporate concrete steps to expand and strengthen vaccine safety research, including:
- enhanced funding for CDC’s Immunization Safety Office activities, including support of extramural research
- enhanced funding for FDA’s safety monitoring activities
- expansion of NIH vaccine safety activities to include research portfolios, funding through requests for proposals, program announcements, and creation of a study section dedicated to vaccine safety research
Priority. Every effort should be made to fully understand the potential adverse events of vaccines.*^
* Issues marked with an asterisk (*) indicate those that were raised in public and/or stakeholder meetings during Task 1 or through the Request for Information (RFI) issued as part of Task 1.
\^ Several issues raised in public meetings during Task 1 as concerns about vaccine safety do not directly relate to issues of governance and structure for a robust vaccine safety system. Although important concerns, these have not been included in this table. The excluded concerns are: manufacturing security, vaccine effectiveness, mandated vaccines, and the role of insurance companies in vaccination.
*^ Issues marked with a caret (^) indicate those that were raised by stakeholders at the kickoff meeting on July 14-15, 2009. |
| Efficiency | Applies adequate resources to highest priority strategic initiatives, disinvestments from unproductive or low priorities initiatives, and makes prudent use of resources |
| Equity | Distributes burdens and benefits of vaccine safety functions fairly |
- Does race or gender affect how well a vaccine will work, or what any adverse events might be?*
- Are people with immune compromised systems more at risk for adverse events?*
- Are the elderly at greater risk for adverse events?*
- Are pre-mature babies more at risk for adverse events?*
- Are pregnant women more at risk for adverse events?* |
<table>
<thead>
<tr>
<th>KEY PERFORMANCE ATTRIBUTES</th>
<th>EXPLANATION</th>
<th>RELEVANT PUBLIC, STAKEHOLDER, AND IOM COMMENT RAISED DECEMBER 2008-DECEMBER 2009*<sup>5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence-Based Decision Making</td>
<td>Applies the best available data from the scientific method to formulate research questions, policies, and practices</td>
<td>How do we identify good, trustworthy information about the benefits, and especially the risks associated with vaccines?

Evidence-based policy. While it is not always possible to know every potential ramification, every effort should be made to ground vaccine policy in vaccine safety evidence.(^\wedge)</td>
</tr>
<tr>
<td>Initiative</td>
<td>Is self-starting in pursuit of opportunities to fulfill mission requirements</td>
<td></td>
</tr>
<tr>
<td>Innovativeness</td>
<td>Pursues mission requirements with innovative thinking</td>
<td></td>
</tr>
<tr>
<td>Objectivity</td>
<td>Acts without undue influence from those who have a stake in outcomes of safety assessment (programs promoting vaccines, advocacy organizations, litigants, etc.)</td>
<td>Desire for Independent Science<sup></sup>
• Who’s doing the science?
• Is it trustworthy?
• Worry about the government/pharmaceutical connections

Independent science. The real and perceived independence of the science is important. Every effort should be made to increase independence. Where this is impossible, additional transparency, peer review and monitoring should be built into the system.(^\wedge)</td>
</tr>
<tr>
<td>Responsiveness</td>
<td>Responds to emerging issues in a timely manner</td>
<td>Agility. Coordination and authorities should enable the government to respond to emerging issues in a timely manner.(^\wedge)</td>
</tr>
<tr>
<td>Transparency</td>
<td>Provides access to information about science, process, and rationale for decisions regarding vaccine safety</td>
<td>Transparency. Wherever it is possible to increase transparency, this should be done. Thoughtful feedback to the public and others will increase confidence in the reporting system’s effectiveness.(^*\wedge)

The National Vaccine Plan should include the establishment and scope of work of a permanent NVAC vaccine safety subcommittee to:
(a) provide guidance on the activities described in 2-1 and 2-2 in a public and transparent manner; (IOM)</td>
</tr>
</tbody>
</table>
EVALUATION CRITERIA WORKSHEET

<table>
<thead>
<tr>
<th>Authority, Oversight, and Leadership</th>
<th>National Vaccine Plan</th>
<th>Relevant Public, Stakeholder, and Advisory Committee Comments</th>
<th>System Configuration Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identified agent responsible for ensuring system works, as defined by functions and optimizing key attributes, and held accountable for successes and failures</td>
<td>Objective 2.8: Enhance integration and collaboration of vaccine safety activities 2.8.1 Improve collaboration, such as data sharing arrangements, across agencies and departments. 2.8.2 Improve information and data sharing with international partners (e.g., national vaccine safety programs) as consistent with ethical and human subjects protections.</td>
<td>• Entity should have clear legislated authority (and resources to match) to coordinate and direct vaccine safety activities across government entities. • This function should ensure high-level coordination, oversight, and dialogue from internal (government) and external stakeholders focused on vaccine safety. • A mechanism for increased coordination and collaboration among immunology, vaccinology, anthropology and other arenas should be required or encouraged. • Multi-Stakeholder Coordination. This function should ensure high-level coordination, oversight, and dialogue from internal (government) and external stakeholders focused on vaccine safety. • Coordination. A mechanism for increased coordination and collaboration among immunology, vaccinology, anthropology and other arenas should be required or encouraged.</td>
<td></td>
</tr>
<tr>
<td>• Oversees and coordinates vaccine safety activities within and among federal agencies and non-federal partners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Shares vaccine safety information with manufacturers, policy makers, and others to aid in future research and vaccine development and immunization practice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Develops, prioritizes, coordinates and monitors a national scientific agenda for vaccine safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Evaluates and enhances the vaccine safety system to address the scientific agenda and emerging technologies and vaccine safety issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ensures vaccine safety assets are coordinated and used to address the scientific agenda and respond to vaccine safety issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasks</td>
<td>National Vaccine Plan</td>
<td>Relevant Public, Stakeholder, and Advisory Committee Comments</td>
<td>System Configuration Evaluation</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Licensing</td>
<td>• Licenses vaccines with acceptable safety profiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ensures optimal manufacturing processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective 2.1: Facilitate the continuous modernization of manufacturing sciences and regulatory approaches relevant to manufacturing, inspection and oversight to enhance product quality and patient safety.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 2.1.1: Facilitate the enhancement of vaccine manufacturing sciences and quality systems, including production technologies, in process controls and testing, and identification of best practices in preventive quality systems and oversight.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 2.1.2: Develop, implement and periodically reassess risk-based scientific approaches to identify inspectional priorities and best practices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 2.1.3: Support new technologies and modernization of both industry and FDA testing of product quality to better prevent and more rapidly detect potential quality or safety issues.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 2.1.4: Evaluate current regulations, guidance documents, policies and procedures that are relevant to manufacturing to determine enhancements that could be made to promote and enhance product safety.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emphasis should be on safety without regard to effectiveness or disease prevention.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasks</td>
<td>National Vaccine Plan</td>
<td>Relevant Public, Stakeholder, and Advisory Committee Comments</td>
<td>System Configuration Evaluation</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
</tbody>
</table>
| Monitoring | ● Detects potential signals of vaccine adverse events
● Investigates associations between vaccination and outcomes for potential signals | Objective 2.2: Enhance timely detection and evaluation of vaccine safety signals.
2.2.1: Improve the effectiveness and timeliness of AEFI signal identification and assessment through coordinated use of national Reporting Data: Is the data accurate? Are there ways to improve reporting? passive and active surveillance systems.*
2.2.3: Assess lay public and professional questions and concerns about vaccine safety.
2.2.4: Improve the process for assessing AEFI signals to determine which signals should be evaluated further in epidemiological and clinical studies.
Objective 2.3. Improve timeliness of the evaluation of vaccine safety signals when a high priority new vaccine safety concern emerges, a new vaccine is recommended or vaccination recommendations are expanded, and during public health emergencies such as in an influenza pandemic or other mass vaccination campaign.
2.3.1: Increase the size of the population under active surveillance for serious AEFIs that can be included in high quality, rigorously conducted epidemiological studies to test vaccine safety hypotheses.
2.3.3: Enhance capacity to monitor immunization safety in the event of a mass vaccination campaign. | ● Reporting Data: Is the data accurate? Are there ways to improve reporting?*
● **Reporting metrics.** Design metrics to measure quantity and quality of reporting by health practitioners and citizens. Use this information to improve reporting systems.^
● **Quality Control.** Ensure that active and passive systems are set up to encourage accurate and timely reporting of adverse events.^^ |
<table>
<thead>
<tr>
<th>Tasks</th>
<th>National Vaccine Plan</th>
<th>Relevant Public, Stakeholder, and Advisory Committee Comments</th>
<th>System Configuration Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Conducts research to enhance capacity to develop and license safer vaccines</td>
<td>2.2.2: Enhance collection of medical histories and biological specimens from selected persons experiencing serious AEFI reported to the Vaccine Adverse Event Reporting System (VAERS), petitioning the National Vaccine Injury Compensation Program (VICP), and available through active surveillance to enhance study of biological mechanisms and individual risk factors.</td>
<td>• Potentially harmful ingredients*</td>
<td></td>
</tr>
<tr>
<td>• Researches the immunologic and physiologic effects of vaccines and vaccine ingredients (related to vaccine safety)</td>
<td>2.3.2: Expand collaboration with clinical, laboratory, genetic and statistical experts to conduct clinical research studies to investigate the role of host genetics in AEFI.</td>
<td>• Schedule/number of vaccines given*</td>
<td></td>
</tr>
<tr>
<td>• Researches the biological mechanisms of vaccine adverse events</td>
<td>Objective 2.5: Improve scientific knowledge about the risk of vaccine adverse events and their mechanisms.</td>
<td>• Do vaccines trigger or contribute to other diseases?*</td>
<td></td>
</tr>
<tr>
<td>• Identifies methods for prevention and treatment of vaccine adverse events</td>
<td>2.5.1 Identify host risk factors, such as previous or concurrent illness or genetic characteristics that may be associated with increased risk for specific AEFI through basic, clinical, or epidemiological research.</td>
<td>• Combinations of vaccines*</td>
<td></td>
</tr>
<tr>
<td>• Assesses individuals who may have experienced vaccine adverse events for additional investigation and analysis</td>
<td>2.5.2 Identify the biological mechanism(s) for specific AEFI that, based upon causality assessments (Strategy 2.4.2), are likely to be causally associated with vaccination.</td>
<td>• Combinations of ingredients*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3 Assess whether the risk of specific AEFI is increased in specific populations such as pregnant women, premature infants, elderly persons, those with immunocompromising or other medical conditions, or based on gender or race/ethnicity.</td>
<td>• Side effects (short-term, long-term)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interactions with medicines, allergies, cosmetics, personal care products, environmental factors*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Do vaccines cause the disease they target?*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Study of vaccinated vs. un-vaccinated*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Are some people pre-disposed to having adverse effects?*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Are people with immune compromised systems more at risk for adverse events?*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Are the elderly at greater risk for adverse events?*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Are pre-mature babies more at risk for adverse events?*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Are pregnant women more at risk for adverse events?*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Specific questions about MMR, Gardisil, flu*</td>
<td></td>
</tr>
</tbody>
</table>

Fostering vaccine safety scientists. Finding ways to entice scientists into this career track is essential to high quality vaccine safety science.^

Gaps in science make communication difficult.^

There needs to be openness to asking vaccine safety questions. ^

Expectations for assessing very rare adverse events are higher. ^

Need to understand biologic underpinning, requires
Objective 2.7: Improve cross-cutting scientific capabilities to enhance vaccine safety and the vaccination safety system.

2.7.1 Enhance the immunization safety science workforce to recruit and retain additional highly trained scientists and clinicians.

2.7.2 Develop additional standard case definitions for AEFI for use in immunization safety surveillance and research, vaccine safety standards such as concept definitions, standardized abbreviations, and standardized study designs.

2.7.3 Improve laboratory, epidemiological and statistical methods used in vaccine safety research.

protocols, networks of people, and expertise in those who know how to understand investigations. ^

Need to expand systems for tracking and hypothesis testing; there are multiple modalities through which this could occur. ^

The National Vaccine Plan should establish a process to identify potential vaccine safety hypotheses for further basic, clinical, or epidemiologic research through annual review of data from the Vaccine Adverse Event Reporting System (VAERS), the Vaccine Safety Datalink (VSD) project, the Clinical Immunization Safety Assessment (CISA) network and the Vaccine Injury Compensation Program, and from information available from sources outside the U.S. (IOM)

The National Vaccine Plan should emphasize the development and publication of a framework for prioritizing a national vaccine safety research agenda that spans all federal agencies and includes all stakeholders, including the public. (IOM)

Causality Assessment

Conducts assessments to determine whether an adverse event is caused by vaccines or vaccination

Objective 2.4: Improve causality assessments of vaccines and related AEFIs.

2.4.2 Assess the evidence on a population level for a causal relationship between certain vaccines and specific serious AEFI.

Injury Compensation

Compensates individuals who experience vaccine adverse events

2.4.3 Regularly update the Vaccine Injury Table based upon individual and population level causality assessments.
<table>
<thead>
<tr>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducts individual-level causality assessment</td>
</tr>
<tr>
<td>Provides guidance and enhance proper administration of vaccines, including evidence-based contraindications to vaccination</td>
</tr>
<tr>
<td>Provides clinical guidance to practitioners on reporting vaccine adverse events and managing adverse events</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Vaccine Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 As appropriate, develop algorithms and assess the evidence on an individual-level for a causal relationship between certain vaccines and specific serious AEFI.</td>
</tr>
<tr>
<td>Objective 2.6: Improve clinical practice to prevent, identify and manage AEFIs.</td>
</tr>
<tr>
<td>2.6.1 Improve training, availability of and access to vaccine safety clinical experts to provide consultation to healthcare providers and public health practitioners.</td>
</tr>
<tr>
<td>2.6.2 Develop additional evidence-based guidelines for vaccination or revaccination, as appropriate, for persons at increased risk of AEFI. Identify additional contraindications and precautions to vaccination, as needed.</td>
</tr>
<tr>
<td>2.6.3 Reduce errors in vaccine administration (e.g., wrong vaccine, dose, injection site, or timing) and associated adverse patient outcomes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant Public, Stakeholder, and Advisory Committee Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>More clinical education about vaccines in medical school and questions about vaccines on Board exams is needed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Configuration Evaluation</th>
</tr>
</thead>
</table>

V2.0 for Public Comment

Page 83

May 10, 2011
<table>
<thead>
<tr>
<th>Tasks</th>
<th>National Vaccine Plan</th>
<th>Relevant Public, Stakeholder, and Advisory Committee Comments</th>
<th>System Configuration Evaluation</th>
</tr>
</thead>
</table>
| **Communications** | Objective 3.3: Enhance delivery of timely, accurate, and transparent information to public audiences and key intermediaries (such as media) about what is known and unknown about the benefits and risks of vaccines and the vaccination program.
3.3.1 Enhance communication of scientific findings about vaccine safety and effectiveness studies to the public, partners, and providers in a clear, transparent and timely manner.
3.3.2 Consistently and effectively respond in a rapid and coordinated manner to emerging vaccine issues and concerns (e.g. supply, safety or public health emergencies).
3.3.3 More rapidly and completely disseminate research findings through peer-reviewed journals, conferences, and partner communications to facilitate implementation of evidence-based strategies. | • How do we identify good, trustworthy information about the benefits, and especially the risks associated with vaccines?*
• How do we ensure that our doctors can spend quality time with patients talking about the benefits and risks of vaccination?*
• Provide accurate, timely information on issues pertaining to vaccine safety. Be clear and honest regarding what is known and unknown.*
• Feedback to states, providers, and individuals. Create feedback systems that share information with those that submit reports to the system.*^
Communications should be honest about what we know and what we don’t know, and research should be done on how to improve delivery of messages. ^ | |
<table>
<thead>
<tr>
<th>Tasks</th>
<th>National Vaccine Plan</th>
<th>Relevant Public, Stakeholder, and Advisory Committee Comments</th>
<th>System Configuration Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engagement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Involves the public and stakeholders in dialogue about issues of concern and priorities for the vaccine safety system</td>
<td>2.2.3: Assess lay public and professional questions and concerns about vaccine safety.</td>
<td>• Citizen participation and oversight*
• Parental and scientific concerns are important, valid, and should be respected*
• Input on important decisions. Because herd immunity relies on high confidence in the safety of vaccines (and government and pharmaceuticals), it is important to regularly engage stakeholders/thought leaders/public in meaningful dialogue about safety concerns and priorities facing the vaccine safety system.^
• Access to decision makers. It is recognized that government cannot give away its authorities, but an improved vaccine safety system would find mechanisms for ongoing constructive dialogue between high-level decision-makers and key stakeholders or members of the public.
• Oversight. To the extent there are ways to increase the number of citizen perspectives on existing boards or to create a separate oversight board with a broad mandate, this may increase confidence in any future vaccine safety system. Involvement and oversight for each functional component of the vaccine safety system will likely contribute to increased confidence in the overall system.*^</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The National Vaccine Plan should emphasize the development and publication of a framework for prioritizing a national vaccine safety research agenda that spans all federal agencies and includes all stakeholders, including the public. (IOM)
Appendix 7 (cont). Evaluation criteria

FEASIBILITY CRITERIA WORKSHEET

<table>
<thead>
<tr>
<th>Politically Feasible</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Administratively Feasible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscally Feasible</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 8. Key vaccine safety system functions as identified by the Vaccine Safety Working Group.

Function 1. Authority, Oversight, and Leadership
- Identified agent responsible for ensuring system works, as defined by functions and optimizing key attributes, and held accountable for successes and failures;
- Oversees and coordinates vaccine safety activities within and among federal agencies and non-federal partners;
- Shares vaccine safety information with manufacturers, policy makers, and others to aid in future research and vaccine development and immunization practice;
- Develops, prioritizes, coordinates and monitors a national scientific agenda for vaccine safety;
- Evaluates and enhances the vaccine safety system to address the scientific agenda and emerging technologies and vaccine safety issues; and
- Ensures vaccine safety assets are coordinated and used to address the scientific agenda and respond to vaccine safety issues.

Function 2. Licensing
- Licenses vaccines with acceptable safety profiles; and
- Ensures optimal manufacturing processes.

Function 3. Monitoring
- Detects potential signals of vaccine adverse events; and
- Investigates associations between vaccination and outcomes for potential signals.

Function 4. Research
- Conducts research to enhance capacity to develop and license safer vaccines;
- Researches the immunologic and physiologic effects of vaccines and vaccine ingredients (related to vaccine safety);
- Resarches the biological mechanisms of vaccine adverse events;
- Identifies methods for prevention and treatment of vaccine adverse events; and
- Assesses individuals who may have experienced vaccine adverse events for additional investigation and analysis.

Function 5. Causality Assessment
- Conducts assessments to determine whether an adverse event is caused by vaccines or vaccination.

Function 6. Injury Compensation
- Compensates individuals who experience vaccine adverse events.

Function 7. Practice
- Conducts individual-level causality assessment
- Provides guidance and enhance proper administration of vaccines, including evidence-based contraindications to vaccination
- Provides clinical guidance to practitioners on reporting vaccine adverse events and managing adverse events

Function 8. Communications
- Provides information (what is known and what is not known) to the government, health practitioners, advocacy organizations, and the public about vaccine safety to facilitate informed decisions
- Communicates new vaccine safety findings as they emerge

Function 9. Engagement
- Involves the public and stakeholders in dialogue about issues of concern and priorities for the vaccine safety system
Appendix 9. Attributes of a vaccine safety system identified by the Vaccine Safety Working Group.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accountability</td>
<td>Includes mechanisms to ensure that promises are kept, duties are performed, and compliance is forthcoming</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>Complies consistently with all prescribed performance attributes, has a well-defined strategy for implementing missions, defines clear prioritization among candidate strategic initiatives, and reassesses/revisions strategy and priorities with experience</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Applies adequate resources to highest priority strategic initiatives, disinvestments from unproductive or low priorities initiatives, and makes prudent use of resources</td>
</tr>
<tr>
<td>Equity</td>
<td>Distributes burdens and benefits of vaccine safety functions fairly</td>
</tr>
<tr>
<td>Evidence-Based Decision Making</td>
<td>Applies the best available data from the scientific method to formulate research questions, policies, and practices</td>
</tr>
<tr>
<td>Initiative</td>
<td>Is self-starting in pursuit of opportunities to fulfill mission requirements</td>
</tr>
<tr>
<td>Innovativeness</td>
<td>Pursues mission requirements with innovative thinking</td>
</tr>
<tr>
<td>Objectivity</td>
<td>Acts without undue influence from those who have a stake in outcomes of safety assessment (programs promoting vaccines, advocacy organizations, litigants, etc.)</td>
</tr>
<tr>
<td>Responsiveness</td>
<td>Responds to emerging issues in a timely manner</td>
</tr>
<tr>
<td>Transparency</td>
<td>Provides access to information about science, process, and rationale for decisions regarding vaccine safety</td>
</tr>
</tbody>
</table>

Appendix 10. April 11-13, 2010 Salt Lake City meeting memorandum

Vaccine Safety Writing Group
April 11th, 12th & 13th, 2010
Salt Lake City, UT

To: Vaccine Safety Working Group and Interested Stakeholders

From: Salt Lake City Writing Group Meeting Participants: Rob Beck, Peter Bell, Sallie Bernard, Guthrie Birkhead, Anna Buchanan, Tawny Buck, Tracy Cron, Vicky Debold, Corry Dekker, Margaret Dunkle, Lance Gordon, Mark Grabowsky, Richard Greenaway, Alan Greene, Barbara Loe Fisher, James Mason, Thomas May, Debbie McCune Davis, Barbara Mulach, Andrew Pavia, Lisa Randall, Bill Raub, Daniel Salmon, Jim Shames, Andrea Sutherland, Zachary Taylor, Jerry Tokars, Collette Young, and Heather Zwickey (see attached list for additional detail)

Re: Salt Lake City Writing Group Meeting on April 11-13, 2010

Date: April 13, 2010

The Salt Lake City Writing Group met for three days of groundbreaking discussions regarding the vaccine safety system. All participants worked respectfully and in good faith. The group identified objectivity, transparency, and evidence-based decision making as highly prioritized attributes of a robust vaccine safety system.

We agreed that an improved safety system would result in the following outcomes:
1. Characterize the safety profile of vaccines and vaccination practice;
2. Detect, prevent, and reduce adverse events in a timely manner;
3. Develop guidance to detect and mitigate the effects of adverse events in individuals;
4. Earn public confidence in the effectiveness of the vaccine safety system and in the safe use of vaccines; and
5. Inform vaccine policy.

Participants agreed that an improved internal assessment system is important and that an external assessment of the vaccine safety system is either essential or acceptable in meeting these outcomes. While there were different views as to the focus and organizational locus of any external assessment and what it would take for it to be adequately independent, it was agreed by participants that it should have the following features:
 - Includes diverse expertise relevant to vaccine safety
 - Regularly and meaningfully engages the public and stakeholders
 - The ability to gain cooperation and response among relevant entities (i.e., has some “teeth”)
 - A charge focused on safety, independent of other vaccination program purposes
 - Use of rigorous scientific and programmatic evidence

A variety of options for fulfilling this need were discussed throughout the meeting.

The nine Vaccine Safety Working Group (VSWG) members who were present specifically shared that they had learned a great deal in this session and that in some cases, their thinking has shifted over the course of the three days. The VSWG members shared that these conversations would continue to inform their internal deliberations on the Working Group.

On June 1, 20106 the VSWG will host an open stakeholder meeting in Washington, D.C., to gain further feedback from interested stakeholders on the vaccine safety system. The Salt Lake City Writing Group has provided valuable feedback that will help the VSWG further refine materials for the June 1 meeting.

6 This date later changed to July 7, 2010 (planned)